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A PUBLIC DOMAIN CLASSIFICATION WORKBENCH FOR DATA MINING 
 
 
 

This paper describes the facilities available in Inducer, a public domain classification workbench aimed at users 
who wish to analyse their own datasets using a range of data mining strategies or to conduct experiments with a 
given technique or combination of techniques across a range of datasets. Inducer has a graphical user interface 
which is designed to be easy to use by beginners, but also includes a range of advanced features for experienced 
users, including facilities to export the information generated in a form suitable for further processing by other 
packages. An experiment using the workbench is described. 

 
 
1. INTRODUCTION 
 

An increasing number of data mining packages have become available in recent years, 
both commercial and public domain. In discussing the commercial packages a recent paper 
[11] comments: "These packages, for the most part, essentially wrap a varying number of 
public domain … components or algorithms (sometimes re-implemented with rather small 
proprietary extensions) in an user-friendly graphical interface. Although such tools 
seemingly make DM technology more readily available to non-expert end-users, they tend 
either to provide only limited functionality … or to come with a non-negligible price-tag". 

There are several public domain data mining packages available. Some such as 
MLC++ [1] and WEKA [13] include a wide range of algorithms but require a significant 
level of user sophistication, e.g. in typing complicated commands or linking modules from a 
program library. Other public domain packages concentrate on a single algorithm. Many of 
the packages provide few facilities to pre-process the user's data or to export information 
from the package for future use. 

Although data mining is a wide-ranging field, one of its key task areas is 
classification. This paper describes Inducer, a public domain classification workbench for 
data mining aimed at users (in most cases non-computer scientists) who wish to analyse 
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their own datasets using a range of alternative data mining strategies or to conduct 
experiments with a technique or combination of techniques across a range of datasets. 

Inducer provides four basic algorithms for classification: tree induction, rule 
induction, nearest neighbour and naïve Bayes classification. Further information about these 
is given in Section 4. The algorithms may be used with a wide range of alternative 
parameter settings.  

The package was designed to facilitate practical experimentation with a range of 
classification algorithms and associated strategies. It is written in a modular fashion to 
enable further algorithms and strategies to be added relatively easily in the future. Inducer is 
intended for use with small to medium-size datasets. It can handle datasets with an 
unlimited number of instances but is not designed for processing very large datasets. It is 
expected that users studying a single dataset will run Inducer many times to gain a good 
understanding of their data. The package automatically keeps a log of basic information 
every time one of the classification algorithms is run. 

No attempt has been made to incorporate a comprehensive collection of classification 
algorithms into Inducer. There are many new algorithms published each year, but few of 
them outperform the more established algorithms across a wide range of datasets. For 
practical purposes a new slightly improved algorithm is likely to be of considerably less 
value than a wide range of facilities for pre-processing the user's data, for exploring the 
effect of 'tuning' the basic algorithms in different ways and for exporting information for use 
outside the package. 

The Inducer package includes a number of datasets, principally reformatted versions 
of datasets provided in the repository of machine learning datasets at the University of 
California at Irvine (UCI) [3]. The intention is that users will gain familiarity with the 
facilities available using these fairly well-behaved datasets before going on to analyse their 
own data. 

Some of the many facilities incorporated in Inducer are described in the following 
sections. 
 
 
2. BASIC USE 
 

Inducer is designed to be easy to use. It runs as a Java applet launched from a standard 
web browser, with extensive on-line documentation. The user can launch Inducer from any 
of three alternative web pages, the choice made determining the graphical interface 
displayed by the applet. There is a 'standard' rule/tree induction interface with few options, 
for use by newcomers, an 'advanced' rule/tree induction interface, for use by experienced 
users, and a nearest neighbour/naïve Bayes interface which omits all rule-specific facilities. 
All three interfaces have a standard look and feel, so familiarity gained from one will 
transfer across to using the other two. 

Fig. 1 shows a screen image of Inducer running the hypothyroid dataset ('hypo') from 
the UCI Repository [3] and illustrates the 'advanced' interface of checkboxes and menus. 
Even for this interface, it requires only three mouse clicks to carry out a classification using 



 

the default settings: two to select a dataset from a menu in the top middle of the screen and 
another to press the go button in the top left-hand corner. For the expert user there is a wide 
range of options and facilities available. 

 
There are no limitations on the maximum size of the datasets that can be processed, 

the maximum number of rules that can be generated etc., except the limitations of the 
memory available. Execution times are typically no more than a few seconds for datasets of 
the size of most of those in the UCI Repository. 

 

 
Fig. 1. Inducer Screen Image 

 
There are currently 24 datasets provided with the Inducer package in its default input  

directory.  Alternative input directories can be specified if preferred. The format of datasets 
is essentially that specified in [12]. Each dataset comprises a name file, a training set and in 
many cases also a test set. The first line of the name file gives a list of all possible 
classifications. Subsequent lines give details of each of the attributes in turn, with the name 
of the attribute followed by either a list of its possible values, in the case of a categorical 
attribute, or the word continuous, denoting a numerical attribute. An extension to the format 
given in [12] is that an attribute can also be specified as ignore. This is a helpful facility for 



 

datasets containing attributes such as name, number of children etc., which in most cases it 
would be meaningless to use for classification. 

Training sets and test sets have the same format. Each record corresponds to one 
instance and comprises the values of each of the attributes in the order in which they are 
listed in the name file, separated by commas as delimiters, followed by the corresponding 
classification as the last field in the record. 

The name file, training set and test set and all other files used by Inducer can be edited 
within the package itself using a standard text editor. Buttons for doing this are provided 
below the two text areas Inducer uses for displaying results. 

For all four classification algorithms, estimates of the predictive accuracy of the 
classifier can be obtained by running Inducer in standard 'train and test' mode (i.e. using a 
training set and a separate test set) or using cross-validation or jack-knifing. In each case 
Inducer calculates and displays a confusion matrix with the entry for row i, column j giving 
the number of instances with a correct classification of i and a computed classification of j. 
In the case of a perfect classification all non-zero entries in the confusion matrix will occur 
on the leading diagonal. Other non-zero entries correspond to the number of incorrect 
classifications for each correct class/incorrect class combination. 

Inducer displays the rules (if applicable) or other information about the classifier in 
one text area on the screen, with the confusion matrix in another. Information about the 
number of correct matches, incorrect matches and unclassified instances, the percentage of 
correct matches and other statistical information is also displayed. The contents of both text 
areas can easily be copied into word processor files for reports etc. 
 
 
3. PRE-PROCESSING DATA 
 

Real-world data can suffer from a variety of problems. Attributes are often included 
that are of little if any predictive value (e.g. the name or eye colour of a patient in a medical 
application).   Attribute values are frequently ‘noisy’ or missing. Numerical values are often 
recorded with an unrealistically high level of (apparent) precision, e.g. 69.428176329. Large 
datasets may contain too many attributes and/or too many instances to process in a 
reasonable time. Some classifications may be so uncommon or meaningless that they will 
simply hinder the classification process. 

Inducer provides a range of facilities for adjusting the input data before it is used for 
classification. Two of the options can be set using the package’s graphical interface. Some 
require the user to edit the ‘name’ file containing the specifications of all the attributes, 
which accompanies each data file. Others require directives to be entered in a header file 
associated with each dataset. 
 
3.1 MISSING ATTRIBUTE VALUES 
 

Two strategies are available in Inducer for dealing with missing attribute values: 
discard (delete any instance that has even one missing attribute value) and estimate (replace 



 

each missing value by an estimate of the true value). The former avoids the possibility of 
introducing errors, but runs the risk of discarding valuable information, especially if there 
are many instances with missing values. The latter strategy avoids discarding any data but 
runs the risk of introducing substantially incorrect estimates in some cases. 
 
3.2 ACCURACY OF NUMERICAL MEASUREMENT 
 

The precision of measurement of numerical attributes can be adjusted without altering 
the data itself in two ways. The standard specification of numerical attributes in the name 
file is continuous. Inducer also supports attribute specifications continuous1, continuous2, 
continuous3, integer and integer10, indicating that the numerical values of an attribute are 
to be rounded to 1, 2 or 3 decimal places, to an integer or to a multiple of 10, respectively, 
before they are used. The user can also specify (using a directive in the header file) that all 
attributes specified as continuous (but not continuous1 etc.) in the name file are to be treated 
as, say, continuous3. 
 
3.3 DEALING WITH IRRELEVANT ATTRIBUTES 
 

There are several ways in which Inducer can be told to use only some of the available 
attributes for classification. 

(a) Any individual attribute can be given a specification of ignore in the name file. 
(b) There is a choose attributes option on the GUI. When it is selected, Inducer first 

reads in the information in the name file, then displays the names of all the (non-ignore) 
attributes and waits for the user to make a selection. Experiments with different 
combinations of attributes for the same dataset can be carried out easily and speedily using 
this facility and can give valuable insights into the user’s data. 

(c) A final option, which is also available on the GUI, is to specify that all continuous 
attributes should be ignored. This is helpful when comparing the performance of the 
algorithms used in Inducer with other published algorithms, which frequently cannot handle 
continuous attributes. 
 
3.4 ATTRIBUTE REDUCTION 
 

Using a large number of attributes for classification can take a substantial amount of 
processing time, especially if they have continuous values. However it is often far from 
clear that the results would be less accurate if a much smaller number of attributes were 
available. It is hard to imagine many practical problems where the classification genuinely 
depends on the values of hundreds or thousands of attributes. Inducer includes a standard 
facility for attribute reduction by means of a header file directive such as use best attributes 
100. Inducer does this by calculating for each attribute in turn the information gain [12] that 
would be obtained by prior knowledge of the value of the attribute and retains only those 
with the highest values. 



 

A recent experiment (related to those reported in [2]) showed the practical value of 
this facility. A decision tree was generated from a training set of instances, each comprising 
the frequency of occurrence of 13,430 words in a set of web pages and their classification 
into one of two possible classes (using the Yahoo classification scheme). Using this 
decision tree to classify instances in an unseen test set gave 94% predictive accuracy. 
Reducing the number of attributes to just 50 before any tree generation took place resulted 
in a different  decision tree which also had 94% predictive accuracy on the test data, but 
with a considerable reduction in the amount of processing required to generate it. 
. 
3.5 IGNORING MINOR OR IRRELEVANT CLASSIFICATIONS 
 

Data not collected specifically with Data Mining in mind can sometimes include 
instances with inappropriate or unhelpful classifications. For example, a weather prediction 
dataset, with classifications fair, sunny, rainy, etc. might include a small proportion 
classified as unrecorded, corresponding to days when the recording equipment 
malfunctioned. To avoid these instances interfering with the classification process, the user 
could search through the data and remove the unrecorded instances, but a far easier way is 
to place a directive such as ignore class unrecorded in the header file. 
 
3.6 USING ONLY PART OF A TRAINING SET 
 

A further header file directive is available to specify that only a given number of 
instances should be read from the training file. This is very useful when the training set is 
large and also makes it straightforward to conduct experiments to establish the number of 
training instances needed to achieve a satisfactory level of predictive accuracy. 
 
3.7 POSITIVE AND NEGATIVE EXAMPLES 
 

A final pre-processing facility provided by Inducer is the ability to treat a dataset with 
multiple classifications as if there were only two. The instances are regarded as positive or 
negative examples of a specified concept (class), say safe.  Effectively, all the other classes 
are combined into a single one, labelled in this case non-safe. 
 
 
4. CLASSIFICATION ALGORITHMS AVAILABLE IN INDUCER 
 

The four classification algorithms available in Inducer are: 
(a) the widely used TDIDT (Top Down Induction of Decision Trees) algorithm which 

generates classification rules via the intermediate representation of a decision tree [12] 
(b) the Prism rule induction algorithm which generates modular classification rules 

that do not fit into a tree structure [7] 



 

(c) k-nearest neighbour matching, which uses a measure of the distance between each 
instance in the training set and an instance to be classified in the test set to find the k nearest 
instances and use their classifications to classify the test instance [10] 

(d) naïve Bayes, which uses probability estimates to classify a test instance [10] 
The first two methods generate rules from the training data. The third and fourth use 

the training data directly and do not form any explicit representation of the underlying 
classifier. 

Many facilities are available to the user for controlling the rule generation process, 
when one of the interfaces for algorithms (a) and (b) is selected. 

 
4.1 RULE GENERATION ALGORITHMS 
 

Seven variants of the TDIDT tree generation algorithm [12] and five variants of the 
Prism rule generation algorithm [7] are provided in Inducer. 

For TDIDT the criterion for selecting the attribute to use at each stage of the tree 
generation process can be: Information Gain (the default setting), Gain Ratio [12], the Gini 
Index, Evidential Power [9], as well as three other simpler methods. 

As well as the standard version of Prism, there are four other versions available. The 
rules may be generated by processing the instances for each class in turn, working either 
from the largest class to the smallest or vice versa. The TC and TCS rule generation 
strategies described in [4] are also available. 

 
4.1.1 USING PRIOR KNOWLEDGE TO CONTROL RULE GENERATION 

In cases where some important rules are known in advance, the user can give them to 
Inducer in a separate 'seed rules' file, the decision tree or rules only being generated for the 
instances the seed rules do not cover. Users can also specify that they wish to choose the 
attribute to be used at each stage of the decision tree or rule generation process. Processing 
pauses until the user selects an attribute to use from a menu or selects 'automatic' indicating 
that from then on the system should make its own selections. Specifying the first few 
choices in this way is designed to allow users to take advantage of the knowledge that some 
attributes are more important to the classification than others. 

 
4.1.2 CUTOFFS DURING RULE GENERATION 

To avoid rules being generated that are over-fitted to the data, either tree or rule 
generation can be pre-pruned using a 'size cutoff' (stop if the number of instances in the 
subset of the training set currently under consideration is below a specified value) or a 
'depth cutoff' (stop once a specified number of terms have been generated for a given branch 
or rule). The author's J-pruning technique [5] is also available. This makes use of the J-
measure, an information theoretic means of quantifying the information content of rules. 

If a clash arises during rule generation (e.g. because a pruning criterion has been met) 
a 'clash threshold' technique is used: if more than a user-specified percentage of the 
instances under consideration belong to the most frequent class they are all treated as 
belonging to that class, otherwise they are all discarded. 



 

 
4.1.3 DISCARDING RULES ON THE BASIS OF 'INTERESTINGNESS' 

A topic of growing importance in recent years is that of rule interestingness [8], the 
aim of which is to identify those rules in a generated rule set that are likely to be of most 
value in classifying unseen instances. Seven measures of rule interestingness are calculated 
by Inducer for each rule generated and the user can choose to discard all rules with the 
value of a specified measure below a threshold level. 

 
4.1.4 POST-PRUNING OF CLASSIFICATION TREES 

A facility for the post-pruning of the decision trees produced by the TDIDT algorithm, 
using 'expected error pruning' is also provided. The decision tree is generated and branches 
are then progressively removed from the bottom up provided that the expected error at the 
leaf nodes is not increased at any stage. 

 
4.2 NEAREST NEIGHBOUR MATCHING 
 
The user can experiment with the value of k, the number of nearest 'neighbours' and can 
specify whether continuous attributes are to be normalized to a standard range of values 
before use. In many cases it is desirable to discard some (perhaps many) of the less 
important attributes before using k-Nearest Neighbour classification, to avoid their having 
too great an influence on the classification. Methods (a) and (b) can be used in combination 
with the 'choose attributes' option described in Section 3.3 to identify and use the attributes 
that are most likely to be of value to the classification. 
 
4.3 NAÏVE BAYES CLASSIFIER 
 
This probabilistic method can only be used when all attributes are categorical. Again, using 
rule or tree induction can indicate which attributes are most likely to prove of most value 
when using this probabilistic method. 
 
 
5. EXPORTING INFORMATION FROM INDUCER 
 
Two important design requirements for any practical data mining package are that as far as 
possible the user is not restricted to just one mode of use and that the user is able to take 
information out of the package for subsequent processing elsewhere. 
 
5.1 SAVING RULES 
 

Having generated classification rules using one of the rule induction algorithms, it is 
standard practice to use them to predict the classification of a test set of instances that have 
already been classified, in order to estimate the accuracy of the classifier. However, the user 



 

may also wish to use the rules to classify either pre-classified data or genuinely unseen data, 
which may be in several separate datasets, possibly weeks or months later. 

Inducer has a GUI option to save the rules as a file in a coded form, together with the 
values of the main system parameter settings, in a way suitable for processing by another 
program or manual editing by the user. The rule file can be used at any time in the future 
simply by selecting the 'Use Saved Rules' option for the same dataset name. The system will 
read in the rules from the appropriate saved rule file, automatically bypass the rule 
generation stage and use the rules to classify the data in the test file. Using the same saved 
rules to classify the instances in several different test sets can easily be achieved using the 
batch file facility described in Section 6. 
 
5.2 EXPORTING RULES TO OTHER PACKAGES 
 

The rules generated by Inducer can be exported to a text file using the 'Output as' 
option on the GUI, in four different formats, including as a Java method (see Fig.2) and as a 
set of Prolog clauses. 
 
public String classify (float sepalLength, float sepalWidth, float petalLength, float petalWidth) { 
String classVal=""; 
if (petalLength<3.3) classVal="Iris-setosa"; 
else if (petalLength>=3.3 && petalLength<5.1 && petalWidth<1.6) classVal="Iris-versicolor"; 
else if (petalLength>=5.1 && petalWidth<1.6) classVal="Iris-virginica"; 
else if (sepalWidth<3.2 && petalLength>=3.3 && petalLength<4.9 && petalWidth>=1.6)  
      classVal="Iris-virginica"; 
else if (sepalWidth>=3.2 && petalLength>=3.3 && petalLength<4.9 && petalWidth>=1.6) 
      classVal="Iris-versicolor"; 
else if (petalLength>=4.9 && petalWidth>=1.6) classVal="Iris-virginica"; 
return classVal; 
} 

Fig.2. Rules Generated from the iris Dataset [3] as a Java Method 
 
The other options are to output the rules in propositional form, i.e. as they are 

displayed on the screen, or in a scripting language suitable for input to the author's 
'Knowledge Web' expert system delivery environment [6]. 
 
5.3 OTHER OUTPUT FILES 
 

Three other output files can also be created giving information relating to the rule 
generation and execution process, for subsequent processing. All of them are all in comma 
delimited format, with export to standard spreadsheets, graphics packages etc. in mind. 

(a) The exceptions file, which contains information about each instance misclassified 
by the generated rules: its reference number, the number of the rule that 'fired', i.e. was used 
to generate a classification for the instance, the predicted class, i.e. the incorrect 
classification generated and the correct classification. 



 

(b) The statistics file, which contains a great deal of information about each run of 
Inducer. For both the training set and the test set (if there is one) it contains the confusion 
matrix generated, plus for each instance a numerical reference number, the number of the 
rule that was used to generate a classification for the instance, the predicted class, i.e. the 
classification generated, the correct classification, plus for each rule, information about its 
classification performance on the instances. 

(c) The rule interestingness file, which contains the values of seven 'interestingness' 
measures for each rule generated. 

(d) The log file. This is automatically generated by the system and records the results 
of every run. 
 
 
6. FACILITIES TO SUPPORT EXPERIMENTATION 
 

Inducer provides two additional facilities to aid experimentation. The first is the log 
file facility mentioned in Section 5. Every time the 'Go' button is pressed, details of the main 
system parameter settings are appended to a log file, together with the number of rules and 
terms generated (if applicable), the number of instances correctly and incorrectly classified 
and other information. The log file is in comma delimited format, suitable for importing to a 
spreadsheet for further processing. 

The second facility is the option to run Inducer in batch mode. When this option is 
checked a list of datasets to use is taken from the file inducer.bat. Pressing the Go button 
causes Inducer to run the currently selected classification algorithm with the current 
parameter settings on each of the datasets in turn. 

The combination of these two facilities can enable a substantial series of experiments 
to be run in a simple and rapid fashion. As an example, an experiment was conducted to 
compare the sensitivity of the four classification algorithms to noise (i.e. incorrect attribute 
values). The dataset used for this experiment was the vote dataset from the UCI Repository. 
The dataset has 16 attributes (all categorical), 2 classes (Democrat and Republican), with 
300 instances in the training set. Ten-fold cross-validation was used to estimate 
classification accuracy. 
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Fig. 3. Effects of Introducing Missing Values in the vote Dataset 



 

 
Using Datagen, another of the packages in the Inducer suite, noise was systematically 

introduced into the training set in a random fashion with frequency from 10% up to 80%. 
Using the batch mode facility of Inducer the classification accuracy of the four algorithms 
was then computed for each of the nine datasets (the original noise-free one, plus the eight 
with noise added) in turn, as a single batch run. The results are summarised in Figure 3. 

This example is presented not because of the significance of the results obtained but 
to illustrate the type of experiments that can be conducted easily using the batch mode 
facility in Inducer. 

Once the datasets had been generated all that was necessary was to: 
• Create a batch file giving the dataset name 
• Start Inducer with the tree/rule interface, select the batch mode and 10-fold cross-

validation options and press the Go button 
• Start Inducer with the nearest neighbour/naïve Bayes interface, select the batch mode 

and 10-fold cross-validation options and press the Go button 
• Import the log file into a spreadsheet as a comma delimited file, and position the 

results correctly in the spreadsheet for displaying as a chart. 
The time taken to complete all four steps, in the case of this small dataset, was only a 
few minutes. 

 
 
7. CONCLUSIONS 

 
The Inducer workbench provides a powerful framework for in-depth experiments with 

alternative classification algorithms and related strategies. The package has been developed 
in a modular fashion to facilitate the addition of further algorithms and strategies as 
required.  

Although not part of its original purpose Inducer has also been used as a teaching tool 
and has proved valuable for this, enabling quite elaborate classification experiments to be 
carried out by students without any need for programming. 
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