
University of Portsmouth
PORTSMOUTH

Hants
UNITED KINGDOM

PO1 2UP

This Conference or Workshop Item

Stahl, Frederic, Gaber, Mohamed, Bramer, Max and Yu,
P. (2011) Distributed Hoeffding trees for pocket data

mining. In: Proceedings of the 2011 International
Conference on High Performance Computing &

Simulation (HPCS 2011), Special Session on High
Performance Parallel and Distributed Data Mining
(HPPD-DM 2011), 4-8 July, 2011, Istanbul, Turkey.

Has been retrieved from the
 University of Portsmouth’s Research Repository:

http://eprints.port.ac.uk

To contact the Research Repository Manager email:

ir@port.ac.uk

http://eprints.port.ac.uk/
mailto:ir@port.ac.uk

Distributed Hoeffding Trees for Pocket Data Mining

Frederic Stahl, Mohamed Medhat Gaber, Max Bramer

University of Portsmouth

{Frederic.Stahl, Mohamed.Gaber, Max.Bramer}@port.ac.uk,

Philip S Yu

University of Illinois at Chicago

psyu@cs.uic.edu

ABSTRACT

Collaborative mining of distributed data streams in a

mobile computing environment is referred to as Pocket

Data Mining PDM. Hoeffding trees techniques have been

experimentally and analytically validated for data stream

classification. In this paper, we have proposed, developed

and evaluated the adoption of distributed Hoeffding trees

for classifying streaming data in PDM applications. We

have identified a realistic scenario in which different

users equipped with smart mobile devices run a local

Hoeffding tree classifier on a subset of the attributes.

Thus, we have investigated the mining of vertically

partitioned datasets with possible overlap of attributes,

which is the more likely case. Our experimental results

have validated the efficiency of our proposed model

achieving promising accuracy for real deployment.

KEYWORDS: Pocket Data Mining, Data Stream Mining,

Distributed Data Mining.

1. INTRODUCTION

Pocket Data Mining PDM has been first coined by the

authors in [10]. This new area of study aims at enabling

collaborative mining of distributed streaming data in

mobile computing environments. To realise such an

application, autonomy and intelligence are two important

features that the system should be characterised with as

discussed in sufficient details in [10]. In response, we

have proposed and experimentally validated in [10] that

using mobile software agents [33] technology can

efficiently realise such a system with a broad range of

applications.

However, in [10] we have only provided a proof of

concept without deploying any stream mining algorithms.

In this paper, we proposed the use of distributed

Hoeffding trees over vertically partitioned data streams

with potential overlap of features. Hoeffding trees [5] is a

data stream classification technique that makes use of the

Hoeffding bound [7] to provide an approximate model

with statistically guaranteed error bounds. To the best of

our knowledge, this is the first work that adopts Hoeffding

trees in a distributed environment over vertically

partitioned data sets. The adoption of Hoeffding trees in

this application is based on its proved efficiency as first

reported in the work by Domingos et al [5,6], and then

extended by Kirkby et al in [8,9].

We have used the implementation of Hoeffding trees

technique from the Massive Online Analysis MOA tool [3]

to implement our system. The technique has been wrapped

in a mobile software agent using the JADE toolkit [12]

adding both autonomy and intelligence to the technique.

Our experimental results show the efficiency of the

proposed technique. Various settings over real datasets

have been used in the experiments.

The paper is organised as follows. Section 2 reviews the

related work in the stream mining area. Our proposed

method is detailed in Section 3. A thorough experimental

study is given in Section 4. The paper is concluded in

Section 5.

2. RELATED WORK

Related work in this area includes systems developed by

Kargupta el al in [25,30,27,23,11] for mobile data mining

in mobile brokering and road safety, and by Pirttikangas et

al [29] for context-aware health club. Brief descriptions of

these systems will follow.

Kargupta et al [25,30,27] have developed the first

ubiquitous data stream mining system termed MobiMine.

It is a client/server PDA-based distributed data mining

application for financial data streams. The system

prototype has been developed using a single data source

and multiple mobile clients; however, the system is

designed to handle multiple data sources. The server

functionalities in the proposed system are data collection

from different financial web sites and storage, selection of

active stocks using common statistics methods, and

applying online data mining techniques to the stock data.

The client functionalities are portfolio management using

a mobile micro-database to store portfolio data and

information about user's preferences, and construction of

the WatchList, which is the first point of interaction

between the client and the server. The server computes the

most active stocks in the market, and the client in turn

selects a subset of this list to construct the personalized

WatchList according to an optimisation module. The

second point of interaction between the client and the

server is that the server performs online mining, then

transforms the results using Fourier transformation and

finally sends this to the client. The client in turn visualises

the results on the PDA screen. It is worth pointing out that

the data mining process in MobiMine has been performed

at the server side given the resource constraints of a

mobile device.

With the increasing need for onboard data mining in

resource-constrained computing environments and the

notable rapid advances in the computational power of

mobile devices, Kargupta et al [23] have developed

Vehicle Data Stream Mining System (VEDAS). It is a

ubiquitous data stream mining system that allows

continuous monitoring and pattern extraction from data

streams generated on-board a moving vehicle. The

mining component is located on the PDA. VEDAS uses

online incremental clustering for modeling of driving

behaviour. A commercial version of VEDAS termed as

MineFleet has been successfully deployed [24,11].

Genie of the Net is an early attempt of adopting mobile

software agents in ubiquiotous data stream mining.

Pirttikangas et al [29] have implemented a mobile agent-

based ubiquitous data mining for a context-aware health

club for cyclists. The process starts by collecting

information from sensors and databases in order to

recognize the needed information for the specific

application. This information includes user's context and

other needed information collected by mobile agents. The

main scenario for the health club system is that the user

has a plan for an exercise. All the needed information

about the health such as heart rate is recorded during the

exercise. This information is analysed using data mining

techniques to advise the user after each exercise.

Other related work includes the large body of data stream

mining algorithms. Key techniques and approaches in the

area are discussed in [13] and more recently in the tutorial

presented by Gama et al in [29].

Addressing the resource constraints of small

computational devices like smart phones and Personal

Digital Assistants PDAs has been reported in work

conducted by Gaber el al in [14,16,15,17]. The approach

taken in this body of work has been termed as

Granularity-based approach. It adapts the data mining

algorithm to adjust the resource consumption pattern

according to availability of resources. Notably, successful

applications of the approach in road safety and healthcare

have been reported in [20,21,22].

3. PDM: THE POCKET DATA MINING

ARCHITECTURE

The architecture of our PDM framework is illustrated in

Figure 1 [10]. The figure shows, the data stream mining

process runs onboard the users' smart mobile phones. It is

based on three basic agents:

• The Mobile Agent Ressource Discoverer (MRD)

which roams the network searching for data

streams and available AMs that are relevant for

the data mining task.

• Agent Miner (AM) which implements a data

mining algorithm that trains a model on a local

data source such as a data stream.

• The Mobile Agent Decision Maker (MADM)

which moves to AMs that have been discovered

by the MRD and appraised to be relevant for the

data mining task, retrieves information about the

data mining task from the AMs on which it bases

a collective decision.

The abbreviations KNN, HT and NB stand for possible

data mining algorithms that can be embedded in the AMs.

KNN stands for the K-Nearest Neighbours, HT stands for

Hoeffding Tree and NB for Naive Bayes classifiers.

Figure 1. PDM Architecture

As the data streams come in, the model derived by the

AMs is continuously updated to cope with the possible

concept drift of the streaming environments. The process

of stream mining is carried out using an AM. AMs are

already distributed in the network before the data mining

task is initiated. Some of these miners could be stationary

and some others could be mobile. The smart phone on

which the data mining task is initiated is called the `task

initiator'. Stationary agents are instructed by the MRD to

mine the streaming data on the mobile device without

making any hops. However, the mobile agents could travel,

instructed by the MRD, to one or more nodes in order to

perform the mining task. The choice of using stationary or

mobile agent relies on the nature of the task and the

number of nodes involved in the processing. Typically,

AMs are data stream classification techniques. But the use

of other techniques is also possible according to the

required task.

If at any point in time, a user decides to use the models

built using the different AMs on all the mobile phones to

collaborate in finding the class label of a set of unlabeled

instances, an MADM is fired to visit the nodes consulting

the models about the local class label. While these agents

are visiting the different nodes, it may decide to terminate

its itinerary given that clearly there is a dominant class.

This clearly makes the agent framework the suitable

technology for this task.

4. DISTRIBUTED HOEFFDING TREES

A prototype of the PDM framework has been evaluated in

computational terms elsewhere [10], in particular the

communication performance and the parallel performance.

With respect to communication performance it has been

found that the communication overhead of mobile

MADMs is very low. With respect to the parallel

performance it has been found that the more MADMs are

used the quicker all the AMs are visited. However, the

version of PDM presented in [10] replaced the actual data

mining algorithms by random result generators in order to

simulate large numbers of AMs. Whereas [10] shows the

computational applicability of PDM, this paper evaluates

the first prototype of PDM with real data mining

algorithms in terms of its applicability to mining

streaming data in the context of classification.

The AMs implement Hoeffding classification trees from

MOA [3]. The Hoeffding tree algorithm as depicted by

Bifet and Kirkby in [4] is shown in Figure 2. Hoeffding

trees have been designed for classifying high-speed data

streams. Each AM runs a Hoeffding tree induction

algorithm and the MADMs are used to collect the

classification results. The owner of each AM may have

subscribed to a certain subset of the data stream, or to

different features of the same data. These might be

features the owner of the local AM is particularly

interested in. For some analysis tasks the currently

subscribed features might be enough information,

however, for classification of previously unseen whole

data instances these features might be insufficient to

achieve acceptable classification accuracy. As the owner

of the local AM may not be subscribed to the full data

stream, it cannot access the missing features itself.

However, it can consult further AMs that belong to

different owners and that may be subscribed to different

features. These consulted AMs collaborate in order to

classify the unseen data instances.

Figure 2. Hoeffding Tree Algorithm

The user can consult each available AM by sending one or

more MADMs with the data instances to be classified to

each AM. The MADM will collect the locally derived

predictions on which it will base its decision for

predicting the previously unseen data instances. However,

the local prediction is not the only information delivered

by the AM. Each AM also gives an estimate about its

accuracy, which we refer to as `weight'. Basically each

AM is fed with partial data instances it knows the

classification of. The AM will treat a newly streamed data

instance either as a test, or training instance. A probability

with which a data instance is selected as test or training

instance is to be defined by the owner of the AM. If the

instance is selected as test instance, then the Hoeffding

tree tries to classify it in order to estimate the `weight' of

the local AM.

In order to take concept drifts into consideration when

estimating the `weight', it is important that older test

instances are not being taken into consideration. The

maximum number of test instances that are taken into

consideration is defined at the startup of the AM. Now if

the maximum number of test instances is for example 20

and there have been already 20 test instances selected,

then the oldest of the 20 test instances is replaced by the

next newly selected test instance.

The scenario of a classification task of the task initiator

agent could be described in the following steps:

1. Start the MRD agent to discover `classifier AMs'

with a for the classification task relevant data

stream. The MRD agent will return with a list of

relevant AMs to be used.

2. When the MRD agent returns, an MADM is

started that loads the unlabelled data instances

for classification and hops to the AMs in the list

derived by the MRD agent.

3. On each visited AM the MADM asks the AM to

predict the classification of its unlabelled

instances and also retrieves the AM's `weight' or

estimated accuracy.

4. The MADM returns to the task initiator and

performs a weighted majority voting for each

unlabelled data instance using each AM's

prediction and `weight' in order to give the final

prediction.

The basic idea is that the MADM hops with its instances

for classification to each AM and retrieves the predicted

classification for each instance plus the `weight' of the

AM on the data stream. After the MADM visited all AMs,

a `weighted' majority voting is applied in order to derive

the final classification. For example if there are three AMs

A, B and C and one data instance to predict its class,

assuming that A predicts class X with a `weight' of 0.55,

AM B predicts X with a `weight' of 0.2 and AM C predicts

class Y with a `weight' of 0.8, then the `weighted'

classification result would be for class X 0.75

(0.55+0.2=75) and for class Y 0.8. Thus the MADM

would choose Y as the predicted class.

In general the `weight' is referred to the estimated

accuracy on the data stream evaluated by the AM,

whereas the actual `predictive accuracy' is only for

experimental purposes, in order to assess the AM's actual

performance.

4.1. Experimental Setup

This version of the PDM framework is based on the

implementation discussed in [10], which is described in

Section 3 and has been empirically evaluated. For the

implementation the well known JADE framework has

been used [34], with the reasoning that there exist a

version of JADE, JADE-LEAP (Java Agent Development

Environment-Lightweight Extensible Agent Platform),

that is designed for the implementation of agents on

mobile devices and can be retrieved from the JADE

project website as an `add on' [34]. As JADE works on

standard PCs as well as on mobile devices, it was possible

to develop and test the first prototype of the PDM

framework on a test LAN. The LAN consists of 8 PCs

with different hardware configurations, which are

connected using a standard `CISCO Systems' switch of the

catalyst 2950 series.

The Hoeffding tree implementation used in these

experiments is extracted from the `Mobile Online

Analysis' tool which is based on WEKA [35,3] libraries

and thus allows the usage of data files in the `.arff' format.

In our experimental setup we used 8 AMs each running a

Hoeffding tree induction algorithm and one MADM

collecting classification results. Each Hoeffding tree on

each AM is only using the features the AM is subscribed

to in order to train and update the classifier. The AMs in

the current implementation can be configured that they

only take specific features into account or a certain

percentage of randomly selected features out of the total

number of features. The latter configuration is for our

experimental purposes.

The data streams were simulated using the datasets

described in Table 1. Datasets for tests 1, 2, 5 and 6 were

retrieved from the UCI data repository [1] and datasets for

tests 3 and 4 were retrieved from the Infobiotics

benchmark data repository [2]. As discussed above, the

data stream takes a random data instance from the dataset

and with a predefined probability uses it as a test instance

in order to calculate the `weight' of the AM or uses it as a

training instance for the local Hoeffding tree. Please note

that instances might be selected more than once by the

data stream, however, if a data instance has been used as a

test instance, it will be removed from the stream and never

selected again, in order to avoid overfitting on test

instances. Also as discussed above, a maximum number of

test instances is predefined. If the maximum number is

reached, then the oldest test instance is replaced by the

next newly selected test instance.

Table 1. Evaluation Datasets

4.2. Evaluation

PDM using Hoeffding trees has been evaluated in terms of

its classification accuracy using the datasets described in

Table 1. The fact that the datasets in Table 1 are batch

files allowed us to compare PDM's accuracy with

Hoeffding trees to batch learning classification algorithms,

in particular PDM's accuracy is compared to the C4.5

algorithm [31]. The choice of C4.5 is based on its wide

acceptance and use; and to the fact that the Hoeffding tree

algorithm is based on C4.5. In general it is expected that

the accuracy of PDM will become better, the more

features each AM has available to produce its Hoeffding

tree. This is due to the reason that some features are more

relevant and some are less. Thus simply the more features

the AM has available, the more likely it is that these

features are sufficient to describe the concept. Also we

expect that the more AMs are visited by the MADM the

more likely it is that a good predictive accuracy is

achieved. This is because it is also more likely that there is

at least one AM visited with a good performance on the

MADM's instances and also produces a high `weight'. For

all experiments in this Section 30% of the data file has

been taken as test instances and the remaining 70% as

streaming instances for the AM.

Figure 3 shows the total accuracy of PDM's MADM

plotted versus the number of AMs visited by the MADM.

The experiments have been conducted for AM's holding a

percentage of features from the total feature space, in

particular 20%, 30% and 40% of the total feature space.

The features an AM holds have been randomly selected

for these experiments, however, it is possible that different

AMs may have selected the same or partially the same

features.

It can be seen in Figure 3 that the general tendency is: the

more features the AM holds the higher the accuracy

achieved by the MADM. Also plotted in Figure 3 is the

accuracy of C4.5 achieved by learning the stream data

instances in batch mode using all attributes. It can be seen

that the accuracies achieved by PDM using Hoeffding

trees often come close to the accuracies achieved by C4.5

especially for tests 1, 2, 3 and 4. In tests 5 and 6 even if

the accuracy cannot compete with C4.5 it is still

acceptable, ranging around 70% except for Test 5 with

20% attributes.

Now looking in Figure 3 there are at least 4 striking

outliers to the overall trend of the data series. In particular

for Test 6 with 40% attributes and 1 and 2 visited AMs;

Test 4 for 40% attributes and 1 and 2 visited AMs; Test 4

for 30% attributes and 1 and 2 visited AMs and Test 4 for

20% attributes and 8 visited AMs. The actual MADM has

been implemented that it also shows the actual accuracies

achieved by each AM by classifying the MADM's test

data. This local accuracy is different to the `weight', as the

`weight' is calculated using data instances from the stream

and not the ones from the MADM.

Table 2 compares the weights and accuracies for each of

these outliers. For Test 6 with 40% attributes and two

visited AMs it can be seen that the discrepancy between

the weight (0.87) and actual accuracy (0.57) of AM 1 is

quite large, whereas the weight of AM 2 is close to the

actual accuracy. This discrepancy in `weight' compared

with the actual local accuracy causes the concerning AM

to have a too strong influence on the MADM's

classification mechanism. For Test 6 with only one visited

AM the discrepancy is quite large and thus causes a very

low classification accuracy. Also for Test 4 with 40%

attributes and one visited AM there is a large discrepancy

at AM 1; for Test 4 with 40% attributes and two visited

AMs there is a large discrepancy at AM 1; for Test 4 with

30% attributes and one visited AMs there is a large

discrepancy; for Test 4 with 30% attributes and two

visited AMs there is a large discrepancy at AM 1 and for

Test 4 with 20% attributes and 8 visited AMs there are

large discrepancies for AMs 4, 6, 7 and 8. These

discrepancies have also been observed for non outliers,

however it has also been observed that only for outliers at

least half of the visited AMs had large discrepancies.

Figure 3. PDM Classification Accuracy

Table 2. Weights and Local Accuracies for Outliers

Figure 4 shows the actual accuracy achieved by the

MADM as already shown in Figure 3 and the average of

the local accuracies achieved by the visited AMs versus

the number of AMs that have been visited. Please note

that when the term `local accuracy' is used then this

accuracy is calculated on the test data from the MADM

and is not the estimated `weight'. Each row of plots in

Figure 4 corresponds to the data of one of the datasets

from Table 1 and each column of plots corresponds to a

different percentage of features loaded by the AMs. The

darker line in the plots in Figure 4 corresponds to the

actual achieved accuracy by the MADM and the lighter

line to the total average accuracy of all AMs.

It can be seen in Figure 4 that the general tendency is that

the global accuracy achieved by the MADM by weighted

majority voting is often higher than the average local

accuracies of all AMs visited. In general it can be seen

that the more AMs are visited the more likely it is that the

global accuracy is higher than the average accuracy. The

reason is that with more AMs it is simply more likely that

there is at least one AM that achieves a good accuracy

together with a good `weight' and thus overall has a higher

influence on the total voting system of the MADM.

Figure 4. Averages versus Actual Results

5. CONCLUSIONS

The paper introduced an advanced version of the Pocket

Data Mining framework to enable collaborative mining of

streaming data in mobile environments. The framework

uses mobile software agents technology in order to mine

local data streams collaboratively. Whereas the

computational feasibility has been proved elsewhere [10],

this paper experimentally evaluates the applicability of the

system for classification tasks based on Hoeffding trees.

In general it could be observed that the more agents are

visited, the better the classification accuracy. There have

also been a few outliers for which the classification

accuracy dropped considerably. This is expected to be

fixed using a rating approach, which we are currently

working on.

REFERENCES

[1] Blake C. L. and Merz C. J., “UCI Repository of Machine

Learning Databases (Technical Report)”, University of

California, Irvine, Department of Information and Computer

Sciences, 1998.

[2] Bacardit J. and Krasnogor N., “The Infobiotics PSP

benchmarks repository”.,

http://www.infobiotic.net/PSPbenchmarks, 2008.

[3] Bifet A., Holmes G., Pfahringer B., Kranen P., Kremer H.,

Jansen T., Seidl T., MOA: Massive online analysis, Journal

of Machine Learning Research (JMLR), 2010.

[4] Bifet A. and Kirkby R., “Data Stream Mining: A Practical

Approach”, Center for Open Source Innovation, August

2009.

[5] Domingos P. and Hulten G., “Mining high-speed data

streams”, In International Conference on Knowledge

Discovery and Data Mining, pages 71-80, 2000.

[6] Hulten G., Spencer L., Domingos P., “Mining time-changing

data streams”, Proceedings of ACM KDD 2001, pp. 97-106,

ACM press

[7] Hoeffding W., Probability inequalities for sums of bounded

random variables, Journal of the American Statistical

Association, 58(301):13-30, 1963.

[8] Holmes G., Kirkby R., and Pfahringer B., “Stresstesting

Hoeffding trees”, In European Conference on Principles and

Practice of Knowledge Discovery in Databases, pages 495-

502, 2005.

[9] Kirkby R., IMPROVING HOEFFDING TREES. PhD thesis,

University of Waikato, November 2007. Bernhard

Pfahringer, Geoffrey Holmes, and Richard Kirkby. New

options for hoeffding trees. In AI, pages 90-99, 2007.

[10] Stahl F., Gaber M. M., Bramer M., and Yu P. S., “Pocket

Data Mining: Towards Collaborative Data Mining in Mobile

Computing Environments”, Proceedings of the IEEE 22nd

International Conference on Tools with Artificial

Intelligence (ICTAI 2010), Arras, France, 27-29 October,

2010.

[11] Agnik, “MineFleet Description”,

http://www.agnik.com/mineeet.html

[12] Bellifemine F., Poggi A., and Rimassa G., “Developing

multi-agent systems with JADE”, in C. Castelfranchi and Y.

Lesperance, (eds.), Intelligent Agents VII. Agent Theories

Architectures and Languages Workshop Proceedings,

Boston, MA, USA, July 7-9, 2000, volume 1986 of LNCS,

pages 89 - 103. Springer Verlag, 2000.

[13] Gaber, M, M., Zaslavsky, A., and Krishnaswamy, S.,

Mining Data Streams: A Review, ACM SIGMOD Record,

Vol. 34, No. 1, pp. 18-26, June 2005, ISSN: 0163-5808.

[14] Gaber M. M., and Yu P. S., A Holistic Approach for

Resource-aware Adaptive Data Stream Mining, Journal of

New Generation Computing, Volume 25, Number 1, 2006,

pp. 95-115, Ohmsha, Ltd., and Springer Verlag.

[15] Phung N. D., Gaber M. M., and Roehm U, “Resource-

aware Online Data Mining in Wireless Sensor Networks”,

Proceedings of the IEEE Symposium on Computational

Intelligence and Data Mining, CIDM 2007, pp. 139-146.

[16] Gaber M. M., “Data Stream Mining Using Granularity-

based Approach”, a book chapter in Foundations of

Computational Intelligence, Volume 6, Volume 206/2009,

pp. 47-66, Springer, Germany, 2009.

[17] Gaber, M, M., Zaslavsky, A., and Krishnaswamy, S., A

“Cost-Effcient Model for Ubiquitous Data Stream Mining”,

Proceedings of the International Conference on Information

Processing and Management of Uncertainty in Knowledge-

Based Systems (IPMU 2004), pp. 747-754, Italy, July 4-9.

[18] Gama J., and Gaber M. M. (Eds), LEARNING FROM

DATA STREAMS: PROCESSING TECHNIQUES IN

SENSOR NETWORKS, Springer Verlag, 2007.

[19] Gama J., Gaber M. M., and Krishnaswamy S., “Data

Stream Mining: From Theory to Applications and From

Stationary to Mobile”, a tutorial presented in the ACM 25th

Symposium On Applied Computing.

[20] Haghighi P. D., Zaslavsky A., Krishnaswamy S., Gaber M.

M., “Mobile Data Mining for Intelligent Healthcare

Support”, Proceedings of the 42nd Hawaii International

Conference on System Sciences (HICSS08), pp. 1-10,

Hawaii, USA, January 5-8, 2009, IEEE 2009.

[21] Horovitz O., Gaber M. M., and Krishnaswamy S., “Making

Sense of Ubiquitous Data Streams: A Fuzzy Logic

Approach”, Proceedings of Knowledge-Based Intelligent

Information and Engineering Systems, KES 2005, pp. 922-

928, Melbourne, Australia, September 14-16, 2005, LNCS

3682, Springer, 2005.

[22] Horovitz, O., Krishnaswamy, S., and Gaber, M, M., A

Fuzzy Approach for Interpretation of Ubiquitous Data

Stream Clustering and Its Application in Road Safety,

Intelligent Data Analysis, Vol. 25, No. 1, pp 89-108, 2007,

IOS Press.

[23] Kargupta H., Bhargava R., Liu K., Powers M., Blair P.,

Bushra S., Dull J., Sarkar K., Klein M., Vasa M., Handy D.,

VEDAS: A Mobile and Distributed Data Stream Mining

System for Real-Time Vehicle Monitoring, Proc. of the

SIAM International Data Mining Conference, 2004.

[24] Kargupta H., Puttagunta V., Klein M., Sarkar K., On-board

Vehicle Data Stream Monitoring using MineFleet and Fast

Resource Constrained Monitoring of Correlation Matrices.

Next Generation Computing, Volume 25, no. 1, 2007.

[25] Kargupta H., Park B., Pittie S., Liu L., Kushraj D., and

Sarkar K. (2002). MobiMine: Monitoring the Stock Market

from a PDA, ACM SIGKDD Explorations. January 2002.

Volume 3, Issue 2. pp. 37-46. ACM Press.

[26] Kargupta H., Hamzaoglu I. and Stafford B., “Scalable,

Distributed Data Mining Using an Agent-Based

Architecture”, Proceedings of Knowledge Discovery and

Data Mining, pp. 211-214, 1997, AAAI Press.

[27] Kargupta H., Sivakumar K., and Ghosh S., Dependency

“Detection in MobiMine and Random Matrices”,

Proceedings of the 6th European Conference on Principles

and Practice of Knowledge Discovery in Databases, pp. 250-

262, 2002.

[28] Page J., Padovitz A., and Gaber M. M., “Mobility in

Agents, a Stumbling or a Building Block?”, Proceedings of

Second International Conference on Intelligent Computing

and Information Systems, Cairo, Egypt, 5-7 March 2005.

[29] Pirttikangas S., Riekki J., Kaartinen J., Miettinen J., Nissila

S., and Roning J., “Genie Of The Net: A New Approach For

A Context-Aware Health Club”, Proceedings ECML'01/

PKDD'01. September 3-7, 2001, Freiburg, Germany.

[30] Pittie S., Kargupta H., and Park B., Dependency Detection

in MobiMine: A Systems Perspective, Information Sciences

Journal. Volume 155, Issues 3-4, pp. 227-243, Elsevier.

[31] Quinlan, J. R. C4.5: PROGRAMS FOR MACHINE

LEARNING. Morgan Kaufmann Publishers, 1993.

[32] Silva J. D., Giannella C., Bhargava R., Kargupta H., and

Klusch M., Distributed Data Mining and Agents,

Engineering Applications of Artificial Intelligence Journal,

2005 volume 18, pp. 791-807.

[33] Zaslavsky A., “Mobile Agents: Can They Assist with

Context Awareness?”, IEEE MDM, Jan. 2004 , California.

[34] JADE-LEAP: http://jade.tilab.com/.

[35] Witten I. and Frank E., DATA MINING: PRACTICAL

MACHINE LEARNING TOOLS AND TECHNIQUES

WITH JAVA IMPLEMENTATIONS, Morgan Kaufmann,

Second Edition, 2005.

