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ABSTRACT 
 

Collaborative mining of distributed data streams in a 

mobile computing environment is referred to as Pocket 

Data Mining PDM. Hoeffding trees techniques have been 

experimentally and analytically validated for data stream 

classification. In this paper, we have proposed, developed 

and evaluated the adoption of distributed Hoeffding trees 

for classifying streaming data in PDM applications. We 

have identified a realistic scenario in which different 

users equipped with smart mobile devices run a local 

Hoeffding tree classifier on a subset of the attributes. 

Thus, we have investigated the mining of vertically 

partitioned datasets with possible overlap of attributes, 

which is the more likely case. Our experimental results 

have validated the efficiency of our proposed model 

achieving promising accuracy for real deployment. 

 

 

KEYWORDS: Pocket Data Mining, Data Stream Mining, 

Distributed Data Mining. 

 

 

1. INTRODUCTION 
 

Pocket Data Mining PDM has been first coined by the 

authors in [10]. This new area of study aims at enabling 

collaborative mining of distributed streaming data in 

mobile computing environments. To realise such an 

application, autonomy and intelligence are two important 

features that the system should be characterised with as 

discussed in sufficient details in [10]. In response, we 

have proposed and experimentally validated in [10] that 

using mobile software agents [33] technology can 

efficiently realise such a system with a broad range of 

applications. 

 

However, in [10] we have only provided a proof of 

concept without deploying any stream mining algorithms. 

In this paper, we proposed the use of distributed 

Hoeffding trees over vertically partitioned data streams 

with potential overlap of features. Hoeffding trees [5] is a 

data stream classification technique that makes use of the 

Hoeffding bound [7] to provide an approximate model 

with statistically guaranteed error bounds. To the best of 

our knowledge, this is the first work that adopts Hoeffding 

trees in a distributed environment over vertically 

partitioned data sets. The adoption of Hoeffding trees in 

this application is based on its proved efficiency as first 

reported in the work by Domingos et al [5,6], and then 

extended by Kirkby et al in [8,9]. 

 

We have used the implementation of Hoeffding trees 

technique from the Massive Online Analysis MOA tool [3] 

to implement our system. The technique has been wrapped 

in a mobile software agent using the JADE toolkit [12] 

adding both autonomy and intelligence to the technique. 

Our experimental results show the efficiency of the 

proposed technique. Various settings over real datasets 

have been used in the experiments. 

 

The paper is organised as follows. Section 2 reviews the 

related work in the stream mining area. Our proposed 

method is detailed in Section 3. A thorough experimental 

study is given in Section 4. The paper is concluded in 

Section 5.  

 

2. RELATED WORK 
 

Related work in this area includes systems developed by 

Kargupta el al in [25,30,27,23,11] for mobile data mining 

in mobile brokering and road safety, and by Pirttikangas et 

al [29] for context-aware health club. Brief descriptions of 

these systems will follow. 

 



Kargupta et al [25,30,27] have developed the first 

ubiquitous data stream mining system termed MobiMine. 

It is a client/server PDA-based distributed data mining 

application for financial data streams. The system 

prototype has been developed using a single data source 

and multiple mobile clients; however, the system is 

designed to handle multiple data sources. The server 

functionalities in the proposed system are data collection 

from different financial web sites and storage, selection of 

active stocks using common statistics methods, and 

applying online data mining techniques to the stock data. 

The client functionalities are portfolio management using 

a mobile micro-database to store portfolio data and 

information about user's preferences, and construction of 

the WatchList, which is the first point of interaction 

between the client and the server. The server computes the 

most active stocks in the market, and the client in turn 

selects a subset of this list to construct the personalized 

WatchList according to an optimisation module. The 

second point of interaction between the client and the 

server is that the server performs online mining, then 

transforms the results using Fourier transformation and 

finally sends this to the client. The client in turn visualises 

the results on the PDA screen. It is worth pointing out that 

the data mining process in MobiMine has been performed 

at the server side given the resource constraints of a 

mobile device.  

 

With the increasing need for onboard data mining in 

resource-constrained computing environments and the 

notable rapid advances in the computational power of 

mobile devices, Kargupta et al [23] have developed 

Vehicle Data Stream Mining System (VEDAS). It is a 

ubiquitous data stream mining system that allows 

continuous monitoring and pattern extraction  from data 

streams generated  on-board a moving vehicle. The 

mining component is located on the PDA. VEDAS uses 

online incremental clustering for modeling of driving 

behaviour. A commercial version of VEDAS termed as 

MineFleet has been successfully deployed [24,11]. 

 

Genie of the Net is an early attempt of adopting mobile 

software agents in ubiquiotous data stream mining. 

Pirttikangas et al [29] have implemented a mobile agent-

based ubiquitous data mining for a context-aware health 

club for cyclists. The process starts by collecting 

information from sensors and databases in order to 

recognize the needed information for the specific 

application. This information includes user's context and 

other needed information collected by mobile agents. The 

main scenario for the health club system is that the user 

has a plan for an exercise. All the needed information 

about the health such as heart rate is recorded during the 

exercise. This information is analysed using data mining 

techniques to advise the user after each exercise. 

Other related work includes the large body of data stream 

mining algorithms. Key techniques and approaches in the 

area are discussed in [13] and more recently in the tutorial 

presented by Gama et al in [29]. 

 

Addressing the resource constraints of small 

computational devices like smart phones and Personal 

Digital Assistants PDAs has been reported in work 

conducted by Gaber el al in [14,16,15,17]. The approach 

taken in this body of work has been termed as 

Granularity-based approach. It adapts the data mining 

algorithm to adjust the resource consumption pattern 

according to availability of resources. Notably, successful 

applications of the approach in road safety and healthcare 

have been reported in [20,21,22].  

  

3. PDM: THE POCKET DATA MINING 

ARCHITECTURE 
 

The architecture of our PDM framework is illustrated in 

Figure 1 [10]. The figure shows, the data stream mining 

process runs onboard the users' smart mobile phones. It is 

based on three basic agents: 

• The Mobile Agent Ressource Discoverer (MRD) 

which roams the network searching for data 

streams and available AMs that are relevant for 

the data mining task. 

• Agent Miner (AM) which implements a data 

mining algorithm that trains a model on a local 

data source such as a data stream. 

• The Mobile Agent Decision Maker (MADM) 

which moves to AMs that have been discovered 

by the MRD and appraised to be relevant for the 

data mining task, retrieves information about the 

data mining task from the AMs on which it bases 

a collective decision. 

The abbreviations KNN, HT and NB stand for possible 

data mining algorithms that can be embedded in the AMs. 

KNN stands for the K-Nearest Neighbours, HT stands for 

Hoeffding Tree and NB for Naive Bayes classifiers. 

 
 

Figure 1. PDM Architecture 



As the data streams come in, the model derived by the 

AMs is continuously updated to cope with the possible 

concept drift of the streaming environments. The process 

of stream mining is carried out using an AM. AMs are 

already distributed in the network before the data mining 

task is initiated. Some of these miners could be stationary 

and some others could be mobile. The smart phone on 

which the data mining task is initiated is called the `task 

initiator'. Stationary agents are instructed by the MRD to 

mine the streaming data on the mobile device without 

making any hops. However, the mobile agents could travel, 

instructed by the MRD, to one or more nodes in order to 

perform the mining task. The choice of using stationary or 

mobile agent relies on the nature of the task and the 

number of nodes involved in the processing. Typically, 

AMs are data stream classification techniques. But the use 

of other techniques is also possible according to the 

required task.  

 

If at any point in time, a user decides to use the models 

built using the different AMs on all the mobile phones to 

collaborate in finding the class label of a set of unlabeled 

instances, an MADM is fired to visit the nodes consulting 

the models about the local class label. While these agents 

are visiting the different nodes, it may decide to terminate 

its itinerary given that clearly there is a dominant class. 

This clearly makes the agent framework the suitable 

technology for this task.    

 

4. DISTRIBUTED HOEFFDING TREES 
 

A prototype of the PDM framework has been evaluated in 

computational terms elsewhere [10], in particular the 

communication performance and the parallel performance.  

With respect to communication performance it has been 

found that the communication overhead of mobile 

MADMs is very low. With respect to the parallel 

performance it has been found that the more MADMs are 

used the quicker all the AMs are visited. However, the 

version of PDM presented in [10] replaced the actual data 

mining algorithms by random result generators in order to 

simulate large numbers of AMs. Whereas [10] shows the 

computational applicability of PDM, this paper evaluates 

the first prototype of PDM with real data mining 

algorithms in terms of its applicability to mining 

streaming data in the context of classification.  

 

The AMs implement Hoeffding classification trees from 

MOA [3]. The Hoeffding tree algorithm as depicted by 

Bifet and Kirkby in [4] is shown in Figure 2. Hoeffding 

trees have been designed for classifying high-speed data 

streams. Each AM runs a Hoeffding tree induction 

algorithm and the MADMs are used to collect the 

classification results. The owner of each AM may have 

subscribed to a certain subset of the data stream, or to 

different features of the same data. These might be 

features the owner of the local AM is particularly 

interested in. For some analysis tasks the currently 

subscribed features might be enough information, 

however, for classification of previously unseen whole 

data instances these features might be insufficient to 

achieve acceptable classification accuracy.  As the owner 

of the local AM may not be subscribed to the full data 

stream, it cannot access the missing features itself. 

However, it can consult further AMs that belong to 

different owners and that may be subscribed to different 

features. These consulted AMs collaborate in order to 

classify the unseen data instances. 

 
Figure 2. Hoeffding Tree Algorithm 

 

The user can consult each available AM by sending one or 

more MADMs with the data instances to be classified to 

each AM. The MADM will collect the locally derived 

predictions on which it will base its decision for 

predicting the previously unseen data instances. However, 

the local prediction is not the only information delivered 

by the AM. Each AM also gives an estimate about its 

accuracy, which we refer to as `weight'. Basically each 

AM is fed with partial data instances it knows the 

classification of. The AM will treat a newly streamed data 

instance either as a test, or training instance. A probability 

with which a data instance is selected as test or training 

instance is to be defined by the owner of the AM. If the 

instance is selected as test instance, then the Hoeffding 

tree tries to classify it in order to estimate the `weight' of 

the local AM.  

 

In order to take concept drifts into consideration when 

estimating the `weight', it is important that older test 

instances are not being taken into consideration. The 

maximum number of test instances that are taken into 

consideration is defined at the startup of the AM. Now if 

the maximum number of test instances is for example 20 

and there have been already 20 test instances selected, 



then the oldest of the 20 test instances is replaced by the 

next newly selected test instance. 

The scenario of a classification task of the task initiator 

agent could be described in the following steps: 

1. Start the MRD agent to discover `classifier AMs' 

with a for the classification task relevant data 

stream. The MRD agent will return with a list of 

relevant AMs to be used. 

2. When the MRD agent returns, an MADM is 

started that loads the unlabelled data instances 

for classification and hops to the AMs in the list 

derived by the MRD agent. 

3. On each visited AM the MADM asks the AM to 

predict the classification of its unlabelled 

instances and also retrieves the AM's `weight' or 

estimated accuracy. 

4. The MADM returns to the task initiator and 

performs a weighted majority voting for each 

unlabelled data instance using each AM's 

prediction and `weight' in order to give the final 

prediction. 

The basic idea is that the MADM hops with its instances 

for classification to each AM and retrieves the predicted 

classification for each instance plus the `weight' of the 

AM on the data stream. After the MADM visited all AMs, 

a `weighted' majority voting is applied in order to derive 

the final classification. For example if there are three AMs 

A, B and C and one data instance to predict its class, 

assuming that A predicts class X with a `weight' of 0.55, 

AM B predicts X with a `weight' of 0.2 and AM C predicts 

class Y with a `weight' of 0.8, then the `weighted' 

classification result would be for class X 0.75 

(0.55+0.2=75) and for class Y 0.8. Thus the MADM 

would choose Y as the predicted class. 

 

In general the `weight' is referred to the estimated 

accuracy on the data stream evaluated by the AM, 

whereas the actual `predictive accuracy' is only for 

experimental purposes, in order to assess the AM's actual 

performance. 

 

4.1. Experimental Setup 

 
This version of the PDM framework is based on the 

implementation discussed in [10], which is described in 

Section 3 and has been empirically evaluated. For the 

implementation the well known JADE framework has 

been used  [34], with the reasoning that there exist a 

version of JADE, JADE-LEAP (Java Agent Development 

Environment-Lightweight Extensible Agent Platform), 

that is designed for the implementation of agents on 

mobile devices and can be retrieved from the JADE 

project website as an `add on' [34]. As JADE works on 

standard PCs as well as on mobile devices, it was possible 

to develop and test the first prototype of the PDM 

framework on a test LAN. The LAN consists of 8 PCs 

with different hardware configurations, which are 

connected using a standard `CISCO Systems' switch of the 

catalyst 2950 series. 

 

The Hoeffding tree implementation used in these 

experiments is extracted from the `Mobile Online 

Analysis' tool which is based on WEKA [35,3] libraries 

and thus allows the usage of data files in the `.arff' format. 

In our experimental setup we used 8 AMs each running a 

Hoeffding tree induction algorithm and one MADM 

collecting classification results. Each Hoeffding tree on 

each AM is only using the features the AM is subscribed 

to in order to train and update the classifier. The AMs in 

the current implementation can be configured that they 

only take specific features into account or a certain 

percentage of randomly selected features out of the total 

number of features. The latter configuration is for our 

experimental purposes. 

 

The data streams were simulated using the datasets 

described in Table 1. Datasets for tests 1, 2, 5 and 6 were 

retrieved from the UCI data repository [1] and datasets for 

tests 3 and 4 were retrieved from the Infobiotics 

benchmark data repository [2]. As discussed above, the 

data stream takes a random data instance from the dataset 

and with a predefined probability uses it as a test instance 

in order to calculate the `weight' of the AM or uses it as a 

training instance for the local Hoeffding tree. Please note 

that instances might be selected more than once by the 

data stream, however, if a data instance has been used as a 

test instance, it will be removed from the stream and never 

selected again, in order to avoid overfitting on test 

instances. Also as discussed above, a maximum number of 

test instances is predefined. If the maximum number is 

reached, then the oldest test instance is replaced by the 

next newly selected test instance. 

Table 1. Evaluation Datasets 

 
 

4.2. Evaluation 
 

PDM using Hoeffding trees has been evaluated in terms of 

its classification accuracy using the datasets described in 

Table 1. The fact that the datasets in Table 1 are batch 

files allowed us to compare PDM's accuracy with 

Hoeffding trees to batch learning classification algorithms, 

in particular PDM's accuracy is compared to the C4.5 

algorithm [31]. The choice of C4.5 is based on its wide 



acceptance and use; and to the fact that the Hoeffding tree 

algorithm is based on C4.5. In general it is expected that 

the accuracy of PDM will become better, the more 

features each AM has available to produce its Hoeffding 

tree. This is due to the reason that some features are more 

relevant and some are less. Thus simply the more features 

the AM has available, the more likely it is that these 

features are sufficient to describe the concept. Also we 

expect that the more AMs are visited by the MADM the 

more likely it is that a good predictive accuracy is 

achieved. This is because it is also more likely that there is 

at least one AM visited with a good performance on the 

MADM's instances and also produces a high `weight'. For 

all experiments in this Section 30% of the data file has 

been taken as test instances and the remaining 70% as 

streaming instances for the AM. 

 

Figure 3 shows the total accuracy of PDM's MADM 

plotted versus the number of AMs visited by the MADM. 

The experiments have been conducted for AM's holding a 

percentage of features from the total feature space, in 

particular 20%, 30% and 40% of the total feature space. 

The features an AM holds have been randomly selected 

for these experiments, however, it is possible that different 

AMs may have selected the same or partially the same 

features. 

 

It can be seen in Figure 3 that the general tendency is: the 

more features the AM holds the higher the accuracy 

achieved by the MADM. Also plotted in Figure 3 is the 

accuracy of C4.5 achieved by learning the stream data 

instances in batch mode using all attributes. It can be seen 

that the accuracies achieved by PDM using Hoeffding 

trees often come close to the accuracies achieved by C4.5 

especially for tests 1, 2, 3 and 4. In tests 5 and 6 even if 

the accuracy cannot compete with C4.5 it is still 

acceptable, ranging around 70% except for Test 5 with 

20% attributes. 

 

Now looking in Figure 3 there are at least 4 striking 

outliers to the overall trend of the data series. In particular 

for Test 6 with 40% attributes and 1 and 2 visited AMs; 

Test 4 for 40% attributes and 1 and 2 visited AMs;  Test 4 

for 30% attributes and 1 and 2 visited AMs and Test 4 for 

20% attributes and 8 visited AMs. The actual MADM has 

been implemented that it also shows the actual accuracies 

achieved by each AM by classifying the MADM's test 

data. This local accuracy is different to the `weight', as the 

`weight' is calculated using data instances from the stream 

and not the ones from the MADM. 

 

Table 2 compares the weights and accuracies for each of 

these outliers. For Test 6 with 40% attributes and two 

visited AMs it can be seen that the discrepancy between 

the weight (0.87) and actual accuracy (0.57) of AM 1 is 

quite large, whereas the weight of AM 2 is close to the 

actual accuracy. This discrepancy in `weight' compared 

with the actual local accuracy causes the concerning AM 

to have a too strong influence on the MADM's 

classification mechanism. For Test 6 with only one visited 

AM the discrepancy is quite large and thus causes a very 

low classification accuracy. Also for Test 4 with 40% 

attributes and one visited AM there is a large discrepancy 

at AM 1; for Test 4 with 40% attributes and two visited 

AMs there is a large discrepancy at AM 1; for Test 4 with 

30% attributes and one visited AMs there is a large 

discrepancy; for Test 4 with 30% attributes and two 

visited AMs there is a large discrepancy at AM 1 and for 

Test 4 with 20% attributes and 8 visited AMs there are 

large discrepancies for AMs 4, 6, 7 and 8. These 

discrepancies have also been observed for non outliers, 

however it has also been observed that only for outliers at 

least half of the visited AMs had large discrepancies.  

 
Figure 3. PDM Classification Accuracy 

 

Table 2. Weights and Local Accuracies for Outliers 

 
Figure 4 shows the actual accuracy achieved by the 

MADM as already shown in Figure 3 and the average of 



the local accuracies achieved by the visited AMs versus 

the number of AMs that have been visited. Please note 

that when the term `local accuracy' is used then this 

accuracy is calculated on the test data from the MADM 

and is not the estimated `weight'. Each row of plots in 

Figure 4 corresponds to the data of one of the datasets 

from Table 1 and each column of plots corresponds to a 

different percentage of features loaded by the AMs. The 

darker line in the plots in Figure 4 corresponds to the 

actual achieved accuracy by the MADM and the lighter 

line to the total average accuracy of all AMs.  

 

It can be seen in Figure 4 that the general tendency is that 

the global accuracy achieved by the MADM by weighted 

majority voting is often higher than the average local 

accuracies of all AMs visited. In general it can be seen 

that the more AMs are visited the more likely it is that the 

global accuracy is higher than the average accuracy. The 

reason is that with more AMs it is simply more likely that 

there is at least one AM that achieves a good accuracy 

together with a good `weight' and thus overall has a higher 

influence on the total voting system of the MADM. 

 
Figure 4. Averages versus Actual Results 

 

5. CONCLUSIONS 
 

The paper introduced an advanced version of the Pocket 

Data Mining framework to enable collaborative mining of 

streaming data in mobile environments. The framework 

uses mobile software agents technology in order to mine 

local data streams collaboratively. Whereas the 

computational feasibility has been proved elsewhere [10], 

this paper experimentally evaluates the applicability of the 

system for classification tasks based on Hoeffding trees. 

In general it could be observed that the more agents are 

visited, the better the classification accuracy. There have 

also been a few outliers for which the classification 

accuracy dropped considerably. This is expected to be 

fixed using a rating approach, which we are currently 

working on.  
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