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Abstract. Distributed and collaborative data stream mining in a mobile
computing environment is referred to as Pocket Data Mining PDM. Large
amounts of available data streams to which smart phones can subscribe
to or sense, coupled with the increasing computational power of handheld
devices motivates the development of PDM as a decision making system.
This emerging area of study has shown to be feasible in an earlier study
using technological enablers of mobile software agents and stream min-
ing techniques [1]. A typical PDM process would start by having mobile
agents roam the network to discover relevant data streams and resources.
Then other (mobile) agents encapsulating stream mining techniques visit
the relevant nodes in the network in order to build evolving data mining
models. Finally, a third type of mobile agents roam the network consult-
ing the mining agents for a final collaborative decision, when required
by one or more users. In this paper, we propose the use of distributed
Hoeffding trees and Naive Bayes classifiers in the PDM framework over
vertically partitioned data streams. Mobile policing, health monitoring
and stock market analysis are among the possible applications of PDM.
An extensive experimental study is reported showing the effectiveness of
the collaborative data mining with the two classifiers.

1 Introduction

Recent and continuous advances in smart mobile devices have opened the door
for running applications that were difficult or impossible to run in the past in
such resource-constrained environments. The clear trend is to have more appli-
cations running locally on these devices given their computational and sensing
capabilities. Recent important applications in the area of activity recognition [9,
14] have stimulated our recent research activities. Therefore, we have proposed
the new area of pocket data mining in [1].

Pocket data mining has been first coined in [1] to describe the process of
mining data streams collaboratively in a mobile computing environment. The
PDM framework supports the process from resource discovery to the learning
and usage phases. The core of the framework is the set of data stream mining
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techniques that work together to synthesize a global outcome. The mining tech-
niques are assigned to the mobile devices and are encapsulated as mobile software
agents that are able to move and be cloned. This assignment is done based on
the availability of resources and features of the data available to the mobile de-
vice. We have proved in [1] the computational feasibility of the PDM framework.
However, we have not employed any stream mining technique in our previous
implementation. Thus, in this paper, we propose the use of two data stream clas-
sification techniques. We have chosen Hoeffding trees and Naive Bayes classifiers
due to the following reasons. First, Hoeffding trees classifiers have proved their
efficiency as the state-of-the-art data stream classification technique as reported
in [3]. Second, Naive Bayes is a lightweight naturally incremental classifier.

The paper is organised as follows. Section 2 enumerates the related work. The
architecture of the PDM framework including the details of the used algorithms
is given in Section 3. Extensive experimental study is presented in Section 4.
Ongoing work and concluding remarks and be found in Section 5.

2 Related Work

Distributed data mining techniques have been thoroughly reviewed by Park and
Kargupta in [16]. On the other hand, the field of data stream mining has been
concisely reviewed in [11]. More recently, the utilisation of smart phones’ sensing
capabilities to be used to learn about the user’s activities have been explored
in [13, 9]. It has to be noted that none of the above techniques has explored
the great potential of collaborative mining of data streams in the mobile ad
hoc computing environments, including the work proposed by Miller et el [15],
that only focused on recommender systems for any type of connected devices.
Our work rather attempts to exploit data stream mining techniques for ad hoc
analysis using smartphones in critical applications.

3 PDM: The Pocket Data Mining Architecture

The architecture of the PDM framework is highlighted in Figure 1. The basic
scenario of PDM displayed in Figure 1 involves the following generic (mobile)
software agents [1]: (a) (Mobile) Agent Miners (AM) are distributed over the
network and located on the local mobile devices, they implement data mining
algorithms; (b) Mobile Agent Ressource Discoverers are used to explore the
network and locate computational ressources, data sources and AMs; (c) Mobile
Agent Decision Makers roam the network consulting AMs in order to retrieve
information or partial results for the data mining task. It has to be noted that
we use the terms PDM architecture and PDM framework interchangeably. Any
smart phone in the network can own any kind of PDM agents. The smart phone
from which a data mining task is initiated is called the task initiator. The AMs
in PDM can implement any data mining algorithm such as Hoeffding Decision
Trees (HT), Naive Bayes (NB) or K Nearest Neighbours (K-NN). As the left hand
side of Figure 1 shows, these data mining algorithms are embedded in AMs which
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run on-board a users smart phone. The smart phone may be subscribed to a data
stream. The data mining model that is generated by the AMs is continuously
updated in order to cope with possible concept drifts of the data stream. AMs
may be stationary agents already installed for the use by the owner of the smart
phone but may also be mobile agents distributed at the beginning of the data
mining task. The right hand side of Figure 1 shows the pseudo code of the basic
PDM workflow.

Fig. 1. PDM Architecture

For example in the context of classification, if the task initiator at any point
in time decides to use the models of remotely located AMs to classify a set
of unlabelled data instances, an MADM and an MRD can be used. The MRD
is roaming the network to discover available AMs and data streams onboard
the smart phones. The MADM then loads the unlabelled instances and visits
relevant AMs, as determined by the MRD, in order to collect their predictions
for the correct class labels. While the MADM agent visits different nodes in the
network, it might decide to terminate its itinerary based on a stopping criterion
such as confidence level of the already collected predictions, or a time limit.

The current implementation, which is evaluated in the paper, has two dif-
ferent AMs for classification tasks, namely Hoeffding Tree [3] and Naive Bayes
classifiers. However, the PDM framework allows the use of any classification
technique. The Hoeffding tree classifier from the MOA tool as illustrated by
Bifet and Kirkby in [2] is shown in Figure 2. Hoeffding tree classifiers have been
designed for high speed data streams. On the other hand, the Naive Bayes clas-
sifier has been developed for batch learning, however it is naturally incremental.
The current implementation of PDM uses the Naive Bayes classifier from the
MOA tool [2] which is based on the Bayes Theorem [14] stating that if P (C) is the
probability that event C occurs and P (C|X) is the conditional probability that

event C occurs under the premise that X occurs then P (C|X) = P (X|C)P (C)
P (X) .

According to the Bayes Theorem, the Naive Bayes algorithm assigns a data in-
stance to the class it belongs to with the highest probability. As Naive Bayes
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Fig. 2. Hoeffding Tree Algorithm

generally performs well [10, 12] and is naturally incremental, it is suitable for
classifying data streams.

4 Implementation and Evaluation

As this paper examines PDM’s applicability to classification rule induction on
data streams, both Hoeffding tree and Naive Bayes classifiers have been thor-
oughly tested.

4.1 Experimental Setup

We use the implementation of both classifiers in MOA toolkit [2] which is based
on the WEKA library [4]. We compare two PDM configurations, one where
all AMs are based on Hoeffding trees and the other where all AMs are based
on Naive Bayes. Owners of different AMs may have subscribed to overlapping
subsets of the feature space of the same data stream, as there may be features
that are particularly interesting for the owner of a local AM. However, the current
subscription may be insufficient for classifying new data instances. Subscribing to
more features may not be desirable for many reasons, such as that it may lead to
higher subscription fees or confidentiality constraints. However the owner of the
local AM sends an MADM that visits and consults further AMs that belong to
different owners. The visited AMs are potentially subscribed to different features
and the MADM consults the AMs to classify the unlabelled data instances.
The classification results and accompanying information from the local AMs
are collected and used by the MADM to decide for a final classification. The
accompanying information of the AMs is an estimate of the AM’s own confidence
which is referred to as ‘weight’ in this paper. In PDM, each AM takes with a
previously defined probability a labelled streamed data instance as training or
as test instance. In the current setup the probability that an instance is selected
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as test instance is 20% and as training instance is 80%. The test instances are
used by the local AM to estimate its local classification accuracy/confidence or
‘weight’. Concept drifts are also taken into account when the weight is calculated.
This is done by defining a maximum number of test instances at the startup of an
AM by the owner. For example, if the maximum number of test instances is 20,
and already 20 test instances have been selected then the oldest test instance is
replaced by the next newly selected test instance and the ‘weight’ is recalculated.

The MADM hops with the instances to be classified to each available AM,
requesting to classify the instances and also retrieves the AM’s weight. After
the MADM’s schedule is processed, the MADM derives the final classification
for each data instance by ‘weighted majority voting’. For example, if there are
three AMs A, B and C and one data instance to classify, AM A predicts class
X with a ‘weight’ of 0.55, AM B predicts class X with a ‘weight’ of 0.2 and AM
C predicts class Y with a ‘weight’ of 0.8, then MADM’s ‘weighted’ prediction
would be for class X 0.55 + 0.2 = 0.75 and for class Y 0.8 and as Y yielded the
highest vote, the MADM would label the instance with class Y.

For the implementation of PDM the well known JADE framework has been
used [5], with the reasoning that there exist a version of JADE, JADE-LEAP
(Java Agent Development Environment-Lightweight Extensible Agent Platform),
that is designed for the implementation of agents on mobile devices and can be
retrieved from the JADE project website as an ‘add on’ [6]. As JADE works on
standard PCs as well as on mobile devices, it is possible to develop and evaluate
the PDM framework on a test LAN. The LAN consists of 8 PCs with different
hardware configurations, which are connected using a standard CISCO System
switch of the catalyst 2950 series. In our experimental setup, we used 8 AMs each
running a Hoeffding tree induction algorithm or Naive Bayes, and one MADM
collecting classification results. The AMs in the current implementation can be
configured so that they only take specific features into account or a particular
percentage of randomly selected features out of the total number of features. The
latter configuration is for our experimental purposes as in the real application
we may not know which features a certain AM is subscribed to.

Table 1. Evaluation Datasets

Test Number Dataset Number of Attributes

1 kn-vs-kr 36
2 spambase 57
3 waveform-500 40
4 mushroom 22
5 infobiotics 1 20
6 infobiotics 2 30

The data streams were simulated using the datasets described in Table 1.
Datasets for tests, 1, 2, 3 and 4 were retrieved from the UCI data repository
[7] and datasets for tests 5 and 6 were retrieved from the Infobiotics benchmark
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data repository [8]. The simulated data stream takes a random data instance
from the dataset and feeds it to the AM. Instances might be selected more than
once by the data stream, however if a data instance has been used as a test
instance it will be removed from the stream and never selected again, in order to
avoid overfitting of the AM’s model and calculate the ‘weight’ on test instances.

4.2 Distributed Hoeffding Trees

The fact that the datasets in Table 1 are batch files allows us to compare PDM’s
accuracy with Hoeffding trees to batch learning classification algorithms, in par-
ticular PDM’s accuracy is compared to accuracy of C4.5 and the accuracy of
Naive Bayes. Both batch implementations were retrieved from WEKA [4]. The
choice of C4.5 is based on its wide acceptance and use; and to the fact that the
Hoeffding tree algorithm is based on C4.5. The choice of Naive Bayes is based
on the fact that it is naturally incremental, computationally efficient and also
widely accepted.

In general, the more features an AM has available and the more AMs visited,
the more likely it is to have a better accuracy of the global classification. How-
ever, some features may not be relevant to the classification task and introduce
unnecessary noise. For all experiments in this section, 30% of the data is taken
as test instances for the MADM and the remaining 70% for training the AMs.
All experiments have been conducted 5 times and the achieved local accuracies
on the AMs and the achieved accuracy of the MADM has been recorded and
averaged.

The left hand side of Figure 3 shows the accuracy of PDM plotted versus the
number of AMs visited by the MADM. The experiments have been conducted for
AM’s holding a percentage of features from the total feature space, in particular
20%, 30% and 40% of the total feature space. The features an AM holds have
been randomly selected for these experiments, however it is possible that different
AMs may have selected the same or partially the same features. Looking at the
left hand side of Figure 3, it can be seen that the batch versions of C4.5 and Naive
Bayes achieve a comparable accuracy on all datasets. The largest discrepancy
between both algorithms is for Test 2 where Naive Bayes’s accuracy was 80%
and C4.5 91%. Regarding PDM’s classification accuracy, it can be seen that
in all cases the achieved accuracy is no less than 50%. In general, it can be
observed that for configurations of PDM that use AMs with only 20% of the
attributes, PDM’s classification accuracy is low compared with configurations
that use 30% or 40% of the attributes. Also there does not seem to be a large
discrepancy between configurations that use 30% or 40% of the attributes, which
may be due to the fact that it is more likely with 40% attributes that irrelevant
attributes have already been selected. In general, it can be seen that in many
cases PDM’s classification accuracy is close to the batch classification accuracy of
C4.5 and Naive Bayes, especially for tests 3 and 5, however also for the remaining
tests PDM often achieves close accuracies compared to those achieved from the
batch learning algorithms. In general PDM with Hoeffding Trees achieves an
acceptable classification accuracy. The right hand side of Figure 3 shows the
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Fig. 3. The left hand side of the figure shows PDM’s classification accuracy based
on Hoeffding Trees and the right hand side of the figure the average accuracy of the
MADM (using ‘weighted’ majority voting) versus the average accuracy of the AMs
based on PDM with Hoeffding Trees.

accuracy achieved by the MADM (using ‘weighted’ majority voting) and the
average of the local accuracies achieved by the AMs versus the number of AMs
that have been visited. Each row of plots on the right hand side in Figure 3
corresponds to one of the datastets listed in Table 1 and each column of plots
corresponds to a different percentage of features subscribed to by the AMs. The
darker lines in the plots correspond to the average accuracy of the AMs and
the lighter lines correspond to the accuracy the MADM derived using the local
AM’s ‘weights’ and classifications. It can be observed that in most cases the
‘weighted’ majority voting either achieves a similar or better accuracy compared
with simply taking the average of the predictions from all AMs.

4.3 Distributed Naive Bayes

Similarly, PDM using Naive Bayes has been evaluated the same way as Hoeffding
Trees described in Section 4.2. Similar results compared with Section 4.2 are
expected with PDM using Naive Bayes classifiers.

Figure 4 illustrates the data obtained with PDM using Naive Bayes the
same way as in Figure 3. The left hand side of Figure 4 shows the total accuracy
of PDM plotted versus the number of AMs visited by the MADM. Regarding
PDM ’s classification accuracy, again it can be seen that in all cases the achieved
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Fig. 4. The left hand side of the figure shows PDM’s classification accuracy based on
Naive Bayes and the right hand side of the figure shows the average accuracy of the
MADM (using ‘weighted’ majority voting) versus the average accuracy of the AMs
based on PDM with Naive Bayes.

accuracy is not less than 50%. In general, it can be observed that for configura-
tions of PDM that use AMs with only 20% of the attributes PDM’s classification
accuracy is low compared with configurations that use 30% or 40% of the at-
tributes. In general, it can be seen that in most cases that PDM’s classification
accuracy is close to the batch classification accuracy of C4.5 and Naive Bayes,
especially for tests 3, 4, 5 and 6, however also for the remaining tests PDM often
achieves acceptable accuracies. The achieved accuracies are close compared with
those achieved by the batch learning algorithms which have the advantage over
PDM of having all the features available. In general PDM with Naive Bayes
AMs achieves an acceptable classification accuracy. The right hand side of Fig-
ure 4 shows the accuracy achieved by the MADM (using ‘weighted’ majority
voting) and the average of the local accuracies achieved by the AMs versus the
number of AMs that have been visited. Each row of plots in Figure 4 corresponds
to one of the datasets listed in Table 1 and each column of plots corresponds to
a different percentage of features subscribed to by each AM. The darker lines in
the plots correspond to the average accuracy of the AMs and the lighter lines
correspond to the accuracy the MADM derived using the local AM’s ‘weights’
and classifications. Similar to the Hoeffding tree results, It can be observed that
in most cases the ‘weighted’ majority voting either achieves a similar or better
accuracy compared with simply taking the average of the predictions from all
AMs.
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Fig. 5. Classification Accuracies achieved by both, PDM with Hoeffding Trees and
PDM with Naive Bayes.

The bar charts in Figure 5 show for each number of used AMs the accuracies
of PDM in the following order from left to right: Total accuracy of PDM with
Hoeffding Trees with 20% attributes; total accuracy of PDM with Hoeffding
Trees with 30% attributes; total accuracy of PDM with Hoeffding Trees with
40% attributes; total accuracy of PDM with Naive Bayes with 20% attributes;
total accuracy of PDM with Naive Bayes with 30% attributes; total accuracy
of PDM with Naive Bayes with 40% attributes; accuracy for batch learning of
Naive Bayes with all attributes; and finally accuracy for batch learning of C4.5
with all attributes. For tests 3 and 5, PDM with Naive Bayes AMs and PDM
with Hoeffding tree AMs seem to achieve an equal performance concerning the
classification accuracy. In the remaining tests 1, 2, 4 and 6, there seems to be no
general bias towards one of the two approaches, sometimes PDM with Hoeffding
tree AMs is slightly better than PDM with Naive Bayes AMs and vice versa. The
fact that there doesn’t seem to be a bias towards one of the approaches suggest
that heterogeneous PDM configurations with some AMs implementing Naive
Bayes and some implementing Hoeffding trees would generate a similar perfor-
mance compared with PDM systems solely based on Naive Bayes or Hoeffding
trees.

5 Conclusions

This paper outlines the Pocked Data Mining (PDM) architecture, a framework
for collaborative data mining on data streams in a mobile environment. PDM
uses mobile agents technology in order to facilitate mining of data streams col-
laboratively. PDM has been evaluated concerning its achieved classification ac-
curacy for two different configurations, one with Hoeffding Tree AMs and one
with Naive Bayes AMs. It has been observed that both configurations achieve
an acceptable classification accuracy. Often PDM even achieves close accuracies
compared to the ideal case, where all instances and attributes are available in
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a batch file, so that a batch learning algorithm such as C4.5 or Naive Bayes
can be applied. Also it does not seem that in PDM, one of the used classifiers
(Hoeffding Tree or Naive Bayes) is superior to the other, both setups achieve
very similar results. Also it has been observed that PDM’s weighted majority
voting achieves a better classification accuracy compared with simply the taking
the local average accuracies of all AMs.

PDM opens a powerful yet so far widely unexplored distributed data mining
niche. The particular PDM implementation outlined in this paper for classifi-
cation just scratches the surface of possibilities of collaborative data mining on
mobile devices.
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