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Abstract Conservation is an area in which a great deal of data has
been collected over many years. Intelligent Data Analysis offers the
possibility of analysing this data in an automatic fashion to map
characteristics, identify trends and offer guidance for conservation
action. This paper is concerned with the use of techniques of
Intelligent Data Analysis for an important task in animal
conservation: the identification of the species and origin of illegally
traded or confiscated African rhino horn. It builds on an earlier
analysis by the African Rhino Specialist Group. It is demonstrated
that it is possible to distinguish between both species and country of
origin with a high degree of accuracy and that the results are also
likely to be suitable for use in court.

1. Introduction

The 2000 Red List of Threatened Animals published by the International Union for
Conservation of Nature and Natural Resources (IUCN) identifies one in every four
mammals and one in every eight birds as being at risk of extinction. The number of
critically endangered species has increased significantly since the 1996 IUCN 'Red
List' was published. IUCN and other national conservation agencies and NGOs are
therefore seeking to increase the level of physical and legal protection of threatened
species and habitats in order to conserve biodiversity.

Intelligent Data Analysis techniques offer the potential to assist the conservation
process by improving the analysis of the mass of data that exists, much of which is
multivariate and noisy. Apart from improving ecological understanding of how
systems work, these techniques could provide much needed and improved practical



tools e.g. to classify plants and animals, identify subspecies and hybrids, assess
suitability and carrying capacities of areas for potential reintroduction, or to
identify the origin of illegally traded animal and plant 'products'.

This paper describes the novel use of Intelligent Data Analysis techniques to
identify the origin and species of illegally traded African rhino horn.

2. Rhino Horn lIdentification

There are five species of rhino alive today, two in Africa (White and Black rhino)
and three in Asia (Indian, Javan and Sumatran rhino). Rhinos were among the first
species to be included on the Convention on International Trade in Endangered
Species of Wild Fauna and Flora's (CITES) 'Appendix I' list. This prohibited
international trade in rhino products by CITES parties.

In Africa there was a 96% reduction in numbers of the critically endangered Black
rhino from 1970-92. Numbers of the critically endangered Northern White rhino
also declined from about 2,230 in 1960 to only 15 by 1984. Reintroduction
initiatives have met with mixed success. The major cause of population decline is
the demand for rhino horn, which has been used as an ingredient in traditional
Asian medicine for 2,000 years and also for making the ceremonial curved daggers
worn in some Middle-Eastern countries [1].

Although the international trade in rhino horn has been banned under the CITES
convention since 1976, the demand remains high. Horn poaching generally
involves killing the rhino and hacking off their horn(s). Demand may also
inadvertently have been stimulated in Africa by the publication of exaggerated
values of rhino horn in the press.

International conservation agencies are working to monitor and where possible
eliminate illegal trade in rhino horn. To assist in the identification and prosecution
of illegal rhino poaching/horn dealing cases and to improve knowledge of trade
routes it would be highly desirable to be able to identify the species and origin of
illegally traded horn; and if possible to do so in a manner which would be likely to
prove convincing to a jury. This need resulted in the coordinating body for African
rhino conservation, IUCN Species Survival Commission's African Rhino Specialist
Group (AfRSG) initiating its continental horn fingerprinting project.

3. Rhino Horn Fingerprinting

Although it may appear as if a rhino horn is made of bone, it is in fact more akin to
compacted hair and fingernails. Its chemical composition reflects what the animals
have eaten throughout their lives. The chemical properties of their food are
absorbed into the horn through digestive processes. Furthermore, the chemistry of
this food varies in response to an area’s underlying geology, geomorphological
history, and climate.



Rhino populations now largely occur in discrete separated populations, many of
which are fenced. For this reason it has been hypothesised and subsequently
confirmed that the chemical composition of the horns of rhino in the same park
have strong similarities to each other and that these differentiate them from rhino
living (or killed) in other parks. The white rhino is a grazer (eating tropical grasses)
while the black rhino is a browser (eating succulent plants, trees and herbs). As
these different plant types use different photosynthetic (chemical) pathways, there
are chemical differences in the food the two species eat [2,3].

A report on the first phase of the AfRSG’s horn fingerprinting project to its
sponsors, the World Wide Fund for Nature (WWF), [2] states that a chemical
analysis of rhino horn offers the potential for determining both the probable
geographical source of the horn and the species of rhino that produced it.

A combination of variable values corresponding to a given rhino horn is known as
its fingerprint. The development of a tool for identifying the source of an African
rhino horn from its fingerprint has been rated by the AfRSG as a Continentally
Important project.

In the early 1990s several studies determined that element and isotope
concentrations and their ratios found in rhino horns varied between species and
park origin [3, 4, 5]. The potential for horn fingerprinting indicated by these studies
resulted in the AfRSG assembling an extensive rhino horn chemistry database and
initiating a long-term project to further develop statistical models for the
identification of the species and source of rhino horn. In the first phase of this
project, the AfRSG successfully collected 361 rhino horn samples from 36 parks
and 5 countries. The horns were analysed using three different chemical techniques
and a database was compiled of their chemical characteristics. Discriminant
Function Analysis (DFA) was explored as an approach for the development of the
horn fingerprint identification tool.

4. Collection and Chemical Analysis of Rhino Horn
Samples

The initial phase of the AfRSG study is described in detail in [2].

Horn samples were obtained from South Africa, Namibia, Kenya, Swaziland and
Zimbabwe for the two species of African rhino (Black and White). Good coverage
was obtained for the major rhino populations in South Africa, Namibia and
Swaziland. Samples were obtained from 27 Black rhino populations and 22 White
rhino populations. In 1997 the sampled populations conserved around two thirds of
Africa’s rhinos. While there are gaps in the coverage (especially for Zimbabwe and
Kenya) the AfRSG project has made significant progress in establishing a
continental horn database.



The horn samples were about 5¢cm? in size. They were cut up into smaller samples
and analysed in three different laboratories, each using a different technique:
carbon and nitrogen analysis using mass spectrometry, common and trace element
analysis using inductively-coupled-plasma optical-emission-spectroscopy (ICP-
OES) and heavier isotope analysis using laser ablation inductively-coupled-plasma
mass spectrometry (LA-ICP-MS). Most but not all of the horns in the database
were analysed in all three laboratories. The carbon and nitrogen analyses were
undertaken at the University of Cape Town. The other analyses were carried out by
Anglo American Research Laboratories in Johannesburg.

In the first analysis, four variables were measured: %C and %N, the percentage of
Carbon and Nitrogen respectively, together with 8*3C and §'°N which measure the
'delta ratios' of two isotopes, *3C to >C and N to *N respectively.

The second analysis (ICP-OES) quantified the abundance of 4 common element
variables (Aluminium, Iron, Calcium and Magnesium) and 16 trace elements. In
addition to these, a total of 66 ratios of the 12 most common elements measured by
ICP-OES were calculated, e.g. Fe/Al (Iron divided by Aluminium).

The third chemical analysis measured the relative abundance of 132 isotopes of 58
elements using LA-ICP-MS, e.g. Cadmium (Cd) 110 111 112 113 114. Summing
isotope values for elements with more than one isotope gave an additional 12
variables, e.g. SumCd (Cadmium). In addition, some of the more common isotopes
were used to calculate nine potentially useful isotope ratios, e.g. Sr88Rb85
(Strontium88/Rubidium85).

Data were then examined for approximate normality, and where necessary the data
were subjected to a Log+1 transformation to approximately realize a normal
distribution.

Some of the isotopes are not required by rhino for normal metabolic functions and
others were very rare with the result that a number of elements and isotopes
occurred in such low quantities in some horn samples that they were beyond the
detection capabilities of the machines, and could not be measured.

Principal component analysis (PCA) applied to the ICP-OES common and trace
elements and ratios reduced the data to 12 principal components (OES1 - OES12).
Two PCA runs were performed on the LA-ICP-MS data. The first made use of all
132 isotopes and produced 18 principal components (FLA1 - FLA18). The second
used only the most common 41 isotopes, together with seven of the element sum
variables such as SumCd, and derived 6 new principal components (MLA1 -
MLAG).

As ratios of selected isotopes and elements have discriminatory potential, a set of
15 ratios of the 6 MLA components was also calculated. Only 7 of these were
shown to have any discriminatory ability and the other 8 were discarded.



5. Initial Data Analysis by the AfRSG

The principal technique of data analysis used was classical linear Discriminant
Function Analysis (DFA). Essentially this method predicts the group (i.e. the
species, country etc.) to which a case belongs by deriving a series of mathematical
functions that provide the greatest possible discrimination amongst groups. The
Statistica 5 software package was used to do this.

It was found that the best results were obtained by analysing the data in a
hierarchical fashion, i.e. first establish the species, then the country, then the area
and finally the park.

The AfRSG analyses confirmed the earlier discovery by Lee-Thorp and co-workers
[3] that variable 3*3C was particularly good for discriminating amongst species.
Analysis also showed that variable 3°N was useful for distinguishing amongst
species. The study also found that these two variables were related to climatic
indicators in different areas. However, it was found that species identification was
not as straightforward as initially expected. Using only 8'°C, some black rhino
samples from the Kunene area of Namibia were misclassified.

There were 356 usable samples available for constructing a model at the top level
of the hierarchy to discriminate between species. However, lower down in the
hierarchy many of the sample sizes were very small (e.g. all the rhino of a
particular species in a particular country in a given area).

It is reported that many of the DFA models generated successfully classified all the
samples used to build the model (100% ‘post-hoc’ classification success). However,
the dangers of model overfitting were understood and the possibility of validating
the derived models by techniques such as k-fold cross-validation or ‘jack-knifing'
was considered.

In the case of k-fold cross-validation, the original data is first divided into k
approximately equal parts (generally 5 or 10). Next, k separate models are
generated. Each of the k parts in turn is used to validate a model, and the other k-1
parts are used to generate it. The results of these k experiments are then combined
to give an estimate of the accuracy of the modelling process on genuinely unseen
data. Jack-knifing is the extreme case of k-fold cross-validation, where k is equal to
the total number of examples available in the data. Unfortunately facilities for both
forms of model validation were not available in the Statistica 5 package.

Reference [2] concludes that 'Jack-knife validation is clearly the method that
should be used to validate models in future'. In the absence of such validation they
state 'while these results are very encouraging ... readers still need to be cautious
and treat these results as preliminary'.

Overall the results of these initial analyses were very promising. However the
problems associated with small sample sizes, high data dimensionality and the need



for careful validation of models were recognised. It is possible that these issues
would be better addressed using techniques other than DFA.

A further important issue is the desirability of producing predictive models that can
easily be explained in court and are likely to prove convincing to a jury. It is
possible that this issue too may be better addressed by techniques other than DFA.

The remainder of this paper is concerned with bringing two widely-used techniques
of Intelligent Data Analysis: Artificial Neural Nets and Automatic Induction of
Classification Trees to bear on the problem of rhino horn identification and
represents the next phase of the AfRSG's rhino horn fingerprinting project.

6. Developing Classification Models Using Neural Nets

Neural networks have been applied to many problems of learning classification
models. They generally perform better than traditional methods when the problem
is inherently non-linear (which is highly likely to be the situation with this data).

The most important property of a classification model is its ability to generalise.
Simpler neural network models are capable of generalising better because they
have fewer parameters to estimate. It is therefore important to follow a model
development cycle aimed at reducing the number of variables as far as possible.

Although neural network parameters are estimated by minimising error on a
training sample, the aim is to produce a prediction model that will perform well on
out-of-sample data. It is therefore important to derive an estimate of performance
out of sample. A number of techniques have been developed to derive these
estimates. It is customary to divide the data available into three approximately
equal parts: a training set, a validation set and a test set. The training set is used in
conjunction with the validation set to train the model using a range of alternative
configurations and initialisations of the network. The test set is used to estimate the
performance of the final model on unseen data.

Sufficiently large sample sizes are needed to enable the available data to be divided
into three smaller datasets. There is certainly a cause for concern that sample sizes
were inadequate to do this in the case of the rhino data, especially at the lower
levels of the species-country-park hierarchy, where there is only a restricted
quantity of data available to construct and evaluate the neural network model. For
this reason a jack-knifing approach was used. If there are N samples in a particular
dataset, N models are constructed, in each case using just one sample for the test
set, with the remaining N-1 samples used to build the model.

A considerable gain in the proportion of the data available for training was
achieved using a technique called Bayesian regularisation, which avoids the need
for a separate validation set during the training of Multi-layered feed-forward
networks [6]. This was the principal form of Neural Network used in this study. For
each partition of the data, 10 initialisations of the network were trained. An



alternative to this network that can be used where the dataset is very small and the
classes are unbalanced is the Probabilistic Neural Network (PNN) [7]. This was
also used in this study.

The Matlab software package was used to process the data, with some additional
use of the Predict package from Neuralware Inc.

7. Developing Classification Models Using Automatic
Rule Induction Techniques

The Top-Down Induction of Decision Trees (TDIDT) algorithm is a widely used
method for generating classification rules in the form of a decision tree. Assuming
all variables are numerical, the antecedent (left-hand side) of each rule is a
conjunction of terms such as x<a or x>a, where x is a variable and a is a constant
value. The consequent (right-hand side) of each rule is a classification such as
class=Black. This is known as disjunctive normal form.

Use of the TDIDT algorithm goes back to the 1960s [8]. It is the basis of two very
well known classification algorithms 1D3 [9] and C4.5 [10] and many variants on
these. At each stage of the tree generation process a choice of variables needs to be
made. The most commonly used way of doing this is probably on the basis of
maximising a measure known as Information Gain and that will be the choice
assumed in this paper. Further information is given in [11].

The AfRSG report comments that 'To be successfully used in court the results
(evidence) must be explainable simply and graphically’. Rule based models offer
the potential to achieve this aim by providing an explicit representation of the
underlying model. Each rule is a conjunction of simple tests on the values of
variables, which should be readily understandable by the layman. The complete set
of rules fit together into a tree structure, which is a form of the familiar flowchart.

The method is much less wvulnerable than Neural Nets to the ‘curse of
dimensionality', i.e. problems of computational complexity associated with a large
number of variables. The Information Gain criterion effectively ‘filters out'
unimportant variables. The method requires a training set and a test set, but no
validation set, so it is generally possible to obtain good results with smaller datasets
than for Neural Nets.

The potential value of using a classification tree approach was recognised by the
AfRSG team, which commented that 'model outputs and structure lend themselves
to being displayed graphically and are intuitively understandable’ and ‘analysis
allows for a hierarchical analytic approach which is logically appealing and more
flexible than traditional analysis'. Unfortunately the classification tree analysis
module available in the most recent version of the Statistica package was not
available in the older version (Statistica 5) used by the AfRSG for its analysis.



For the purposes of the study described below the implementation of the TDIDT
(with Information Gain) algorithm in the Inducer Rule Induction Workbench [12]
was used. This implementation supports both k-fold cross-validation and jack-
knifing.

8. Experiments with Rhino Horn Identification

Some experiments using Intelligent Data Analysis techniques to identify the species
and origin of a rhino horn from its chemical composition are described below.
These are part of an ongoing programme of analysis which it is hoped in time will
lead to the development of a fully reliable horn fingerprinting tool to establish the
species and origin of an illegally traded rhino horn beyond reasonable doubt. As for
the experiments described in Section 5, the data was analysed in a hierarchical
fashion, i.e. species, then country, then area, then park.

8.1 Rhino Horn Fingerprint Data

The experiments made use of 52 of the variables identified during the original
AfRSG study: the four variables from the carbon and nitrogen analysis, together
with the 36 variables derived from Principal Component Analysis (OES1-OES12,
MLA1-MLAG6, FLA1-FLA18), four of the summed isotope values (such as SumCd)
and eight of the isotope ratios (such as Sr88Rb85). These were the same variables
used in the data analysis stage of the initial AfRSG study.

Five of the 361 samples gathered by the AfRSG were considered by them to be
unusable, leaving 356. Thus the largest dataset used had 356 records (samples)
each comprising the values of 52 variables plus a classification (species). This was
subdivided into a number of smaller datasets for other classification tasks, all with
52 variables, containing only rhino of a particular species, rhino from a single
country or from a specific park, area etc.

Forty of the 356 samples contained at least one and frequently several missing data
values. The Neural Net and Discriminant Function Analysis algorithms were unable
to cope with missing values so the number of samples was reduced to 316 for most
of the experiments. The exception was the first experiment described below which
used only the four Carbon/Nitrogen variables, for which there are no missing values
in any of the 356 samples. (The TDIDT algorithm implemented in Inducer is able
to cope with missing values by estimating their values, so can make use of all 356
samples.)

It is clear from [2] that the data suffers from many other problems as well as
missing data values. These include the possibility of noise introduced by
measurement errors or inconsistency in measurement techniques.



8.2 Species Discrimination

A Multi-Layered Perceptron (MLP) was produced using Matlab on all 356 of the
usable samples to discriminate between Black and White rhino. In this and all
subsequent experiments with the neural network methods it was first necessary to
reduce the number of variables substantially from the 52 in the datasets described
in Section 8.1 above.

Preliminary data analysis showed that the four Carbon and Nitrogen variables %C,
8'3C, %N and 8'°N were likely to be significant in discriminating between the
Black and White rhino species. This was confirmed by using a genetic algorithm
technique, which selected these 4 variables out of the 52 variables in the dataset
and they were accordingly the variables used in generating the MLP. The MLP was
trained with the four variables listed above using the Bayesian regularized
Levenberg-Marquardt optimisation technique. It was tested by jack-knifing.

The confusion matrix below shows the number of times that each species was
correctly or incorrectly classified.

Predicted Species
Actual Species White Black
White 178 0
Black 2 176

Table 1. Confusion Matrix for Species Identification

The overall predictive accuracy was 99.44%. The output of the neural network is in
fact a probability of an input sample belonging to a White or Black rhino species.
This probability can be used to calculate error bars. Both the misclassified samples
had slightly higher error-bars than those for the rest of the data samples. This could
be used to flag these samples as irresolvable.

A Probabilistic Neural Network (PNN) was also generated, using the same four
variables, with 355 hidden Gaussian basis functions and a width parameter (chosen
by an iterated search between 0.01 and 1) of 0.03. The model was tested by jack-
knifing.

The TDIDT algorithm was used to generate a further model in the form of a
decision tree. In this case all 52 variables were used during model (i.e. rule)
generation. The Inducer package was able to cope easily with the additional
variables. The algorithm was run using a number of the available options and
settings and tested using jack-knifing. It was found that in this case the same (best)
results were obtained using a maximum tree depth of just one as when the tree was
allowed to grow without restriction.

The models generated by PNN and TDIDT were both marginally inferior to that
generated by MLP, giving one additional misclassification. This was also the result




originally obtained using Discriminant Function Analysis. Thus all the methods
used produced models with over 99% predictive accuracy.

The other methods do not output any explicit representation of the rules needed to
discriminate between White and Black rhino on the basis of the values of the
variables stored in the dataset, but TDIDT does so in a convenient form as follows.

In keeping with the earlier findings just two rules are needed to discriminate
between the two species with over 99% accuracy:

1: IF 8%3C < -13.621304 THEN Class = Black
2: IF 813C > -13.621304 THEN Class = White

The above rules can be represented in graphical form as a simple decision tree:

Variable
d13C

<-3.621304 > -3.621304

Black White

It was noticed that all the methods used, including DFA, misclassified the same
Black rhino samples and that these both originated from the Kunene area in North
West Namibia. The earlier work by the AfRSG indicated that possible confusion
between the species would be in very arid areas [2]. Analysis of additional Kunene
black rhino horn samples would assist in further refining species identification.

8.3 Country Discrimination

Table 2 shows the distribution of the 316 samples that had no missing data values
amongst the five countries of origin, broken down by species.

Namibia | South Kenya | Swaziland | Zimbabwe | TOTAL
Africa
Black | 38 97 10 0 18 163
White | 5 137 0 10 1 153

Table 2. Number of Horn Samples From Each Country

Earlier AfRSG analysis showed that decomposing the problem of classification into
parks, areas etc. by species gave better results than treating both species together.
This was borne out by further experiments with Intelligent Data Analysis
techniques.



8.3.1 White Rhino

For this experiment a dataset of the White rhino samples (all 52 variables) was used
in order to predict the country of origin. The one sample for Zimbabwe was
omitted, giving 152 records. A Probabilistic Neural Network was generated using
all 52 variables as input. Iterated search revealed that a spread of o= 0.3 to 0.35
was appropriate for the Gaussian basis functions. The model was cross-validated by
jack-knifing. The overall predictive accuracy was 97.36%. This compares well with
the use of Discriminant Function Analysis with the same 52 variables, which gave a
classification accuracy of 94.7%. The following confusion matrix was obtained.

Predicted Country
Actual Country Namibia South Africa Swaziland
Namibia 4 1 0
South Africa 0 137 0
Swaziland 0 3 7

Table 3. Confusion Matrix for Country Identification: White Rhino

Although TDIDT also gave 'only' 94% accuracy, the method demonstrated that
only 7 rules, involving tests on the values of just six variables were needed to gain
that level of accuracy. They are listed below.

1: IF %C < 39.9 AND Sr88Rh85 < 0.754 AND OES8 < 0.989
THEN Class = Swaziland [1]

2: IF %C < 39.9 AND Sr88Rb85 < 0.754 AND OESS8 > 0.989
THEN Class = South Africa [16]

3: IF %C < 39.9 AND Sr88Rb85 > 0.754 AND 5'°N <0.898
THEN Class = Swaziland [9]

4: IF %C < 39.9 AND Sr88Rb85 > 0.754 AND 5'°N > 0.898
THEN Class = South Africa [3]

5: IF %C > 39.9 AND OES12 < 0.686 THEN Class = South Africa [113]

6: IF %C > 39.9 AND OES12 > 0.686 AND §*C < -10.1
THEN Class = South Africa [5]

7: IF %C > 39.9 AND OES12 > 0.686 AND §'°C > -10.1
THEN Class = Namibia [5]

The figures in parentheses indicate the rule coverage, i.e. the number of samples on
which each of the rules is based. As before it would be straightforward to draw a
graphical representation of these rules in flowchart form.

8.3.2 Namibia v Swaziland
A Probabilistic Neural Network was developed to discriminate between White

rhino from Namibia and those from Swaziland, for both of which there are very few
samples. The PNN was trained on the samples from Namibia and Swaziland and a



Density Mixture Model was built using the South African samples. The objective
here is to use the Density Mixture Model to classify a sample as South African or
otherwise (i.e. from Namibia or Swaziland). The PNN can then be used to classify
the non-South African samples. The PNN model was cross-validated by jack-
knifing. The confusion matrix obtained is given below.

Predicted Country
Actual Country Namibia Swaziland
Namibia 4 1
Swaziland 0 10

Table 4. Confusion Matrix for Country Identification: Namibia v. Swaziland

Only one discrimination error was made. However, its error bar was almost 0.5
while the rest of the data sample error bars were less than 0.01. This sample can be
labelled as unclassified giving 100% accuracy for those classified, which is better
than the DFA result of 94.10%. A Kohonen Self Organising Map was also trained
to model the unconditional probability density of the South African White rhino
samples only (density mixture model). The model was able to discriminate between
the South African and the other samples.

TDIDT was also used to discriminate between the five samples from Namibia and
the 10 from Swaziland. Only 2 rules are needed to do this:

1: IF %C < 41.2 THEN Class = Swaziland
2: IF %C > 41.2 THEN Class = Namibia

8.3.3 Generating Additional Data for Black Rhino

For this experiment a dataset of Black rhino samples was used to predict the
country of origin. The ten samples from Kenya were omitted. As for White Rhino,
the distribution of samples between the three remaining countries (classes) was
highly unbalanced (38, 97 and 18), with by far the largest number coming from
South Africa. In this case the problem of unbalanced classes was addressed by
estimating the probability density of each class and generating 138 new data points
by sampling from the distributions. This gave 97 samples from each of the three
classes, Namibia, South Africa and Zimbabwe.

A Multi-layered feed-forward network was designed to classify the samples. The
model was trained by Bayesian regularized Levenberg-Marquardt optimisation, and
tested by 10-fold cross validation. The confusion matrix obtained is given as Table
5. The overall predictive accuracy is 96.56%, which is an improvement on the
result from Discriminant Function Analysis (95.9%).




Predicted Country
Actual Country Namibia South Africa Zimbabwe
Namibia 95 1 1
South Africa 3 89 5
Zimbabwe 0 0 97

Table 5. Confusion Matrix for Country Identification: Black Rhino

The same problem was tackled using TDIDT in a much simpler fashion. The 38
samples from Namibia were duplicated and the 18 samples from Zimbabwe were
replicated four times, giving a distribution of (76, 97, 90) for the three countries. In
this case the result obtained using jack-knifing was a predictive accuracy of
95.82%. All samples from Namibia and Zimbabwe were correctly classified, with 8
of the South African samples wrongly classified as being from Namibia and 3 of
them wrongly classified as being from Zimbabwe.

8.4 Park Determination

South Africa is divided into nine provinces and it was decided to determine how
reliably it was possible to distinguish between horn samples from six black rhino
and six white rhino populations in the province of KwaZulu-Natal. Seeking to
distinguish amongst different parks within a region is a more rigorous test of data
analysis techniques than distinguishing amongst parks that are widely separated.
There are more than 2 samples for each species for each of the parks (74 samples
for White rhino and 58 for Black rhino). The confusion matrices were as follows.

Actual Predicted Park

Park Park 1 Park 2 Park 3 Park 4 Park 5 Park 6
Park 1 29 5 2 0 1 0
Park 2 4 13 0 0 1 0
Park 3 3 1 2 0 0 0
Park 4 0 1 0 2 0 2

Park 5 0 2 0 1 2 0
Park 6 0 0 0 2 1 0
Table 6. Confusion Matrix for Park Identification: White Rhino

Actual Predicted Park

Park Park 1 Park 2 Park 3 Park 4 Park 5 Park 6
Park 1 28 0 1 1 0 0
Park 2 1 5 0 0 0 0
Park 3 2 1 3 0 0 0
Park 4 2 0 0 4 0 0

Park 5 1 1 1 0 2 0
Park 6 3 0 2 0 0 0

Table 7. Confusion Matrix for Park Identification: Black Rhino



In this case Intelligent Data Analysis methods gave a predictive accuracy of 64.9%
for White rhino and 72.4% for Black rhino. The former result is a considerable
improvement on the DFA result of just 40.5% predictive accuracy. The very
unbalanced distribution of classes and the small number of samples for some
classes (parks) are likely to prove problematic for any method of analysis. However
the results are very encouraging and predictive accuracy should increase
substantially in future as sample sizes per park increase.

8.5 Potential Use of Novelty Filters

One requirement for turning horn fingerprinting into a practical routine forensic test
is that it is necessary to be able to detect whether some samples are likely to have
come from areas not yet covered by the continental rhino horn chemistry database.

One possible approach would be to train a Kohonen Self Organising Map as a
novelty filter. This is briefly discussed in Section 8.3.2.

9. Discussion and Conclusions

The experiments described above are part of the AfRSG’s ongoing programme
aimed at turning horn fingerprinting into a practical and reliable forensic tool. The
concern that the original models may have been overfitted was confirmed by the
later analysis. It is also clear that the two methods of Intelligent Data Analysis used,
neural nets and automatic rule induction, improve upon Discriminant Function
Analysis as a means of analysing the rhino horn data and are less prone to problems
of model overfitting.

The AfRSG's interest in using classification trees would appear to be justified.
They give an explicit representation of the decision process in the form of rules as
well as having a natural graphical representation as flowcharts, thus helping to meet
the AfRSG report's requirement that 'results ... must be explainable simply and
graphically'. Neural networks can be formulated to give probability outputs, which
is very useful. They can also be used as novelty detectors to identify whether or not
samples have come from areas not yet included in the continental horn
fingerprinting database.

The Intelligent Data Analysis work described here has taken a step closer to
producing a field operational system.

The small number of samples currently available for classification at park level will
create difficulties for any method; but these are likely to be smaller for rule
induction than for the other methods used. The obvious (although highly
understandable) deficiencies in the data have not prevented a high level of
predictive accuracy being obtained in many cases. However, for practical use, the
predictive accuracy of the technique at park level needs to be increased. An
experiment is planned where additional samples from a few parks will be analysed



to determine how many samples ideally need to be collected per park to raise
predictive accuracy to an acceptable level.

Intelligent Data Analysis is often assumed to be concerned with the processing of
large volumes of data. By contrast the task of rhino horn classification is concerned
with small datasets with noisy data values, missing values, unbalanced class
distributions and for some classes (e.g. individual parks) only very few examples.
These all present significant technical challenges.

The development of a rhino horn fingerprinting tool is a high priority. This is likely
to combine a range of analytic techniques with facilities for displaying information
in graphical form both for use by conservationists and for possible presentation to
juries.

Conservation is an area in which a great deal of data has been collected over many
years. Intelligent Data Analysis offers the possibility of analysing this data in an
automatic fashion to map characteristics, identify trends and offer guidance for
conservation action.
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