Improving Modular Classification Rule
Induction with G-Prism using Dynamic Rule
Term Boundaries

Manal Almutairi®, Frederic Stahl, and Max Bramer?

! Department of Computer Science, University of Reading
Reading, UK
Manal.Almutairi@pgr.reading.ac.uk, F.T.Stahl@reading.ac.uk
2 School of Computing, University of Portsmouth, Portsmouth, UK
Max.Bramer@port.ac.uk

Abstract. Modular classification rule induction for predictive analytics
is an alternative and expressive approach to rule induction as opposed
to decision tree based classifiers. Prism classifiers achieve a similar clas-
sification accuracy compared with decision trees, but tend to overfit less,
especially if there is noise in the data. This paper describes the devel-
opment of a new member of the Prism family, the G-Prism classifier,
which improves the classification performance of the classifier. G-Prism
is different compared with the remaining members of the Prism fam-
ily as it follows a different rule term induction strategy. G-Prism’s rule
term induction strategy is based on Gauss Probability Density Distri-
bution (GPDD) of target classes rather than simple binary splits (local
discretisation). Two versions of G-Prism have been developed, one uses
fixed boundaries to build rule terms from GPDD and the other uses
dynamic rule term boundaries. Both versions have been compared em-
pirically against Prism on 11 datasets using various evaluation metrics.
The results show that in most cases both versions of G-Prism, espe-
cially G-Prism with dynamic boundaries, achieve a better classification
performance compared with Prism.

Keywords: Modular Classification Rule Induction, Dynamic Rule Term Bound-
aries, Gaussian Probability Density Distribution

1 Introduction

The general consensus in the data mining community is that there is no single
best technique that can work successfully on every dataset. However, decision
tree induction is one of the most popular and most widely used algorithms. It
produces classification rules in the form of a tree structure and uses a ‘divide-
and-conquer’ strategy to construct the tree from training data. A considerable
amount of literature has been published discussing and referring to this approach
and a popular and widely used algorithm is C4.5 [13]. However, decision tree

based algorithms suffer from several drawbacks such as redundant rule terms,
overfitting, and replicated subtrees [5]. This paper will revisit some of these
problems in Section 2. Decision rules can be extracted from a decision tree [4]
by transforming each leaf in the tree into a rule [8]. Despite its simplicity, this
process ends up with a set of rules that may inherit all the shortcomings of deci-
sion trees and thus might become more difficult to understand [16, 8]. The author
of [4] argues that the major cause of overfitting problem is the tree represen-
tation itself and suggests that the solution is to look at another representation
which extracts rules directly from data. Examples of classifiers that are based
on the induction of classification rules directly from training dataset are, among
others, RIPPER [7] CN2 [6] and Prism [5]. Cendrowska’s original Prism algo-
rithm started a range of different Prism variations and improvements over the
years, also known as the Prism family of algorithms. Some of the members of
the Prism family are PrismTCS which improves original Prism’s computational
efficiency [3] and PMCRI [15], a parallel version of Prism. Originally Prism was
only applicable on categorical data, however, all aforementioned Prism varia-
tions are also applicable on numerical attributes as will be explained in Section
2.

In [1] we provided a proof of concept (evaluated only on 2 datasets) for a
potentially efficient method to induce such rule terms based on Gauss Probability
Density Distribution (GPDD) of attribute values. The method was termed G-
Prism. There are two contributions in this paper: (1) a more dynamic rule term
boundary allowing larger rule terms to be built (in terms of data coverage)
and (2) a thorough empirical evaluation of both, the original G-Prism, the new
version of G-Prism with dynamic rule term boundaries and original Prism.

This paper is organised as follows: Section 2 introduces Prism and Section
3 describes and positions the development of a new version of Prism based on
Gauss Probability Density Distribution. Section 4 provides an empirical evalua-
tion of G-Prism in comparison with Prism. Section 5 describes our ongoing and
future work and concluding remarks are provided in Section 6.

2 Related Work: The Prism Family of Algorithms for
Inducing Modular Classification Rules

A major critique of rule representation in the form of trees is the replicated sub-
tree problem. First discussed in [5] and later termed replicated subtree problem
in [16]. For example, consider a training dataset with 4 attributes a, b, ¢ and
d. Each attribute can take 2 possible values T (true) and F' (false). There are
also two possible class values stop and go. The rules below encode a pattern that
predicts class stop and all remaining instances would lead to class go.

IF a AND b — Stop
IF c¢ AND d — Stop

Labelling instances go and stop using a tree will require replicated subtrees
to be induced as illustrated in Figure 1. An alternative to decision trees are clas-

sifiers that induce modular IF-THEN classification rules directly from a training
dataset. Each rule can be separately handled or even removed without needing
to reconstruct the whole classifier or affect its accuracy. Cendrowska’s Prism
algorithm [5] can induce such modular IF-THEN rules that do not necessarily
contain any redundancies.

Fig. 1. Replicated subtree problem

Algorithm 1 depicts Prism based on Cendrowska’s original publication [5]. It
also incorporates a method of handling continuous attributes using a local dis-
cretisation technique called cut-points calculations [4], as the original version of
Prism does not consider numerical attributes for inducing rule terms. ChiMerge
[10] and Chi Square [9] are alternative discretisation methods that could convert
the values of continuous attributes into a small number of intervals as a pre-
processing step. Prism generates rules by appending rule terms (using a logical
AND) that maximise the conditional probability with which the rule covers a
target class. A rule is complete if it only covers instances of the target class or if
it cannot be specialised further. Once the rule has been generated all instances
covered by the rule are removed from the training data and the next rule is
constructed from the remaining instances. This is repeated until no instances
that match the target class remain. Then the same process is repeated for the
next target class for the entire original training dataset. This is also known as
‘separate-and-conquer’ approach. Basically Prism classifiers generate rule terms
from numerical attributes o through binary splitting [4], potentially resulting in
rule term combinations such as (10 < «) or (20 > «) to describe an interval of
attribute values. Binary splitting is also very inefficient due to a potentially large
number of probability calculations which can be quantified as N -m -2, where N
is the number of training instances and m the number of numerical attributes.
A better way of representing such a rule term is (10 < o < 20) instead of two
separate rule terms. This would greatly enhance readability of the individual
rules and potentially reduce overfitting. The in this paper presented G-Prism
approach, is able to induce such more readable rule terms.

Another interesting property of the the Prism family of algorithms is that it
by default does not force a classification. If a data instance is unknown to the

classifier, i.e. it is not covered by a Prism rule, it will simply remain unclassified.
We refer to this property as abstaining. Abstaining may be desirable in appli-
cation where an incorrectly classified data instance could be potentially very
costly, such as in financial applications, or risky, such as in medical applications.

Algorithm 1: Learning classification rules from labelled data instances
using Prism.

1 fori=1—Cdo

2 D < Dataset;

3 while D does not contain only instances of class w; do

4 forall attributes a; € D do

5 if attribute o is categorical then

6 Calculate the conditional probability, P(w;|a; =) for all

possible attribute-value (a; = x) from attribute «;
else if attribute a; is numerical then

8 sort D according to x values;

9 foreach x wvalue of o; do
10 | calculate P(w;|a; < z) and P(wi|a; > z);

end
12
end
end
15 Select the (o = x), (a; > x), or (aj < x) with the maximum
conditional probability as a rule term;
16 D + S, create a subset S from D containing all the instances covered by
selected rule term at line 15;
end
18 The induced rule R is a conjunction of all selected (o; = z), (a;; > x), or
(aj < z) at line 15;

19 Remove all instances covered by rule R from original Dataset;

20 repeat

21 ‘ lines 2 to 19;

until all instances of class w; have been removed;
23 Reset input Dataset to its initial state;
end

25 return induced rules;

3 G-Prism: Inducing Rule Terms directly from Numerical
Attributes

This section describes rule induction directly from numerical attributes using
Gauss Probability Density Distribution (GPDD) termed G-Prism. Section 3.1
introduces the in [1] published proof of concept for G-Prism with fixed rule term

boundaries and Section 3.2 introduces the new version of G-Prism using dynamic
rule term boundaries.

3.1 Prism using GPDD to induce Rule Terms for Numerical
Attributes

The work described in this section is inspired by a data stream classifier that
also uses GPDD to induce rule terms from numerical real-time data sources [11].
We have incorporated this rule term structure into G-Prism. The Gaussian dis-
tribution is calculated with mean p and variance o2 for the values of a numerical
attribute o matching a given target class w; in the training dataset. The most
relevant value for a numerical attribute « for the given target class w; is ob-
tained from this Gaussian distribution. Equation 1 can be used to calculate the
conditional probability for class w; for a given attribute value o;:

1 a; —p)?
Ploylwr) = Bl |1, 0%) = ———serp(— %I)
2mo2
A value for P(w;|a;) or log(P(w;|a;)) can be calculated using Equation 2.
This value is then used to acertain the probability of class label w; for a valid
value of attribute o;.

log(P(wilaj)) = log(P(ej|w;)) + log(P(w;)) — log(P(a;)) (2)

The Gaussian distribution for a class label can then be used to determine the
probability of an attribute value a; belonging to class label w;, assuming that o
lies between an upper and lower bound §2;. This is based on the assumption that
the values close to p represent the most common values of numerical attribute o
for w;. This is depicted in Figure 2, values in the shaded area are more relevant
for w; than those outside the shaded area.

9o /‘\
04 I i

03 +
02 +

0.1 4+

Fig. 2. Gaussian distribution of a classification from a continuous attribute

G-Prism uses the next smaller attribute value = and next larger attribute
value y from p to build a rule term (z < «; < y). Then G-Prism calculates
P(w;|z < a; < y). G-Prism does this for each numerical attribute and selects the
rule term with the highest conditional probability to specialise the rule further.

In this process G-Prism also considers categorical rule terms which are induced
in the same way as in the original Prism algorithm. Otherwise G-Prism follows
the same rule specialisation process as outlined in Algorithm 1.

A test of normal distribution may be applied prior to applying this method.
Attributes that are not normally distributed can alternatively be dealt with by
binary splitting as outlined in the Prism algorithm in Section 2.

3.2 Prism using GPDD with Dynamic Rule Term Boundaries

As explained in Section 3.1 above, Gaussian distribution is calculated for a con-
tinuous attribute o with mean p and o2. The range of values which extends to
both sides from g of the distribution should represent the most common val-
ues of attribute a; for the target class w;. For each continuous attributes in a
dataset, the original G-Prism uses the class conditional density probability of
the Gaussian distribution to find a rule term in the form of (z < a < y), which
can maximise the probability with which the rule term covers the target class.
As illustrated in Figure 3 (a), the mean value (u) of the attribute in the middle
of the shaded area represents the highest posterior class probability while x and
y are the next smaller and larger values from p. A rule term is produced using
these two values.

However, this is a very conservative strategy for finding good rule term
boundaries as the GPDD for a range beyond the current fixed boundaries may
still be very high. Thus the approach taken in G-Prism may result in the rules
only covering few instances, which in turn may lead to overfitting of rules and
more rules to be induced.

(a) (b)

05 05

04 + /.\ 04 I

03 I 03 +

02 + 02 -

o1 + 01 L

& | ' | { | I } | |
x Ky Xn Xa X3 X3 X3 W V1 Y2 V3 Va Y

Fig. 3. The shaded area represents a range of values of attributes o for class w;. (a)
68% of all possible values, (b) 95% of all possible values

To overcome this problem, the shaded area under the curve is expanded as
shown in Figure 3 (b). Thus, more attribute values are tested before choosing a
highly relevant range of values that maximises the coverage of a rule for a target
class. This means that instead of generating one range in the form of (x < a <)

by selecting the next lower bound (z) and the next upper bound (y), more
ranges can be dynamically produced in such as (z1 < a < y3), (z3 < a < y5),
(22 < a <ya)y (T < < yg).

Algorithm 2: Learning classification rules from labelled data instances
using G-Prism with Dynamic Bounds.

1 fori=1— C do
2 D < input Dataset;
3 while D does not contain only instances of class w; do
4 forall attributes a; € D do
5 if attribute aj is categorical then
6 Calculate the conditional probability, P(w;|a;) for all possible
attribute-value (a; = x) from attribute o;
7 else if attribute o; is numerical then
8 calculate mean g and variance o2 of continuous attribute o for class w;;
9 foreach value o of attribute o do
10 calculate P(a;|w;) based on created Gaussian distribution created in
line 8;
end
12 for n = mazxBound — 1 do
13 for k =1 — mazBound do
14 | calculate P(z, < aj < yi) ;
end
end
end
end
19 select (o = x) or (z, < o < yp) with the maximum conditional probability as a
rule term ;
20 D « S, create a subset S from D containing all the instances covered by selected
rule term at line 19;
end
22 The induced rule R is a conjunction of all selected rule terms built at line 19;
23 Remove all instances covered by rule R from original Dataset;
24 repeat
25 | lines 2 to 23;
until all instances of class w; have been removed;
27 Reset input Dataset to its initial state;
end

29 return induced rules;

In the current implementation the user can choose the maximum upper and
lower bound considered from p and any combination of rule terms within these
bounds is considered. For example, if the user has chosen a bound of 3, then there
are (32) possible rule terms that are considered for this attribute. Theoretically
it is possible not to impose a bound (apart form the minimum and maximum
values of the attribute) and allow any possible rule term combinations fanning
out from p. However, this is likely to result in a computationally very expensive
approach especially if there are many distinct values for a particular attribute.
Also it is statistically unlikely that rule terms spanning far from the p will cover
many instances of the target class. In our current implementation the default
boundary is 6, which is also used in all of the experiments presented in Section
4. This setting worked well in most case. However, the user is able to specify a
different lower and upper boundary. We termed this improved version of G-Prism
Dynamic Bound G-Prism, which is illustrated in the Algorithm 2. The algorithm
uses the Prism rule induction strategy as outlined in Algorithm 1 combined with
the in this Section presented generation of rule terms which is contained in lines
7-19 in Algorithm 2. As the algorithm follows a ‘separate-and-conquer’ strategy

the number of training instances decreases over time. Thus after each iteration
p and o2 are updated and the bounds are selected from the currently available
values of the numerical attribute.

As mentioned in Section 2 the Prism family, including the new Dynamic
Bound G-Prism has the ability to abstain from a classification if it is uncertain.
This is desirable in applications where incorrectly classified instances are either
costly or risky. This abstaining property is retained in both versions of G-Prism.

4 Empirical Evaluation

The main goal of the experimental evaluation is to compare the performance of
the dynamic rule term boundary approach with binary splitting in Prism and
the fixed boundary approach in G-Prism. Binary splitting is the discretisation
method that has been applied to Prism in [4] to deal with numerical attributes.
Therefore, our comparison is against this implementation of Prism.

4.1 Experimental Setup

The algorithms used for the evaluation are Prism [2] incorporating the rule in-
duction strategy for numerical attributes as outlined in Section 2 as a baseline,
G-Prism as published in [1] with fixed size rule term boundaries which is termed
G-Prism-FB and G-Prism as described in this paper with dynamic rule term
boundaries which is termed G-Prism-DB. Please note that the original publi-
cation of G-Prism-FB [1] produced a proof of concept with limited empirical
evaluation, thus this paper also aims to provide a more detailed empirical anal-
ysis of G-Prism-FB. All algorithms have been implemented in the statistical
programming language R [14]. The fixed sized boundary of G-Prism-FB was set
to one value smaller and one value larger than p, which is how is was originally
implemented in [1]. The dynamic sized boundary was set to allow a range up
to 6 smaller and 6 larger values from p. The algorithms have been applied to
11 datasets from the UCI repository [12]. These datasets were chosen randomly
from all datasets in the UCI repository that comprise numerical attributes only
and require classification tasks. The reason for choosing datasets with numeri-
cal attributes only is because the G-Prism-FB and G-Prism-DB algorithms are
distinct from the baseline Prism only with respect to processing numerical at-
tributes. The datasets have been randomly sampled without replacement into
train and test datasets, whereas the testset comprises 30% of the data. On each
of the datasets the algorithms were evaluated against 6 evaluation metrics for
classifiers which are described below:

— Abstaining Rate: Prism, G-Prism-FB and G-Prism-DB abstain from a clas-
sification if a case is not covered in the ruleset. This would be very useful in
applications where a wrong classification potentially leads to costly or dan-
gerous consequences. The abstain rate is the ratio of instances that remain
unclassified in the testset. A low abstain rate may be desired, however, this
may be at the expense of accuracy. This is a number between 0 and 1.

— Accuracy: This is the ratio of data instances that have been correctly clas-
sified. Unclassified instances are classified using the majority class strategy.
A high classification accuracy is desired. This is a number between 0 and 1.

— Tentative Accuracy (Precision): Different compared with the accuracy above,
the tentative accuracy is the ratio of correctly classified instances based only
on the number of instances that have been assigned a classification. A high
tentative accuracy is desired. This is a number between 0 and 1.

— Recall: The recall is the probability with which a data instance is classified
correctly. A high recall is desired. This is a number between 0 and 1.

— F1 Score: This is the product of recall and tentative accuracy divided by
their average. This is also known as the harmonic mean of precision and
recall. A high F1 Score is desired. This is a number between 0 and 1.

— Number of rules induced: This is simply the total number of rules induced.

One should note that there is a direct relationship between accuracy, tentative
accuracy and abstaining rate as abstained instances are counted as misclassifi-
cations in the accuracy measure, but are not considered at all in the tentative
accuracy measure. Thus a higher abstain rate will also result in a lower accuracy
and a higher tentative accuracy.

4.2 Empirical Results

Figure 4 gives an overview of the results obtained using the datasets and evalu-
ation metrics explained in Section 4.1. A more detailed breakdown of the results
is given in the following illustrations in this section. For easier description we
refer to G-Prism with Dynamic Boundaries as G-Prism-DB and G-Prism with
Fixed Boundaries as G-Prism-FB.

Figure 5 illustrates the difference of the accuracies and tentative accuracies
of G-Prism-DB and G-Prism-FB compared with Prism. As can be seen in the
figure G-Prism-DB achieves a better accuracy compared with Prism in 7 out of
11 datasets. In 7 out of 11 cases G-Prism-DB is considerably better and in one
case (blood transfusion) only marginally better. However, in the cases where G-
Prism-DB has a lower accuracy this accuracy is only marginally lower. G-Prism-
FB does not seem to outperform Prism, in 5 cases it has a higher accuracy and
in 7 it does not. With respect to tentative accuracy both versions of G-Prism
clearly outperform Prism, both achieve a higher tentative accuracy in 10 out of
11 cases. Furthermore G-Prism-DB in comparison with G-Prism-FB achieves a
better accuracy in 7 out of 11 cases and in all cases where G-Prism-DB did not
perform better than G-Prism-FB, it achieved only marginally lower accuracy.

Figure 6 illustrates the difference of the F1 Score and Recall of G-Prism-DB
and G-Prism-FB compared with Prism. Both versions of G-Prism outperform
Prism in 8 out of 11 cases. G-Prism-DB seems to be the better of the two G-
Prism versions with G-Prism-DB achieving a higher recall in 7 out of 11 cases
compared with G-Prism-FB. With respect to the F1 Score G-Prism achieves a
higher score compared with Prism in 10 out of 11 cases. Again, G-Prism-DB
seems to be the better of the two G-Prism versions with G-Prism-DB achieving
a higher F1 Score in 7 out of 11 cases compared with G-Prism-FB.

Data sets

iris seeds wine lrat:;)f"\JJ iiu banknote ecoli yeast brl)(ﬁ)lf]fs moltljscclring l:lr;::; glass
E 8 Prism 12 19 12 19 13 51 78 138 26 31 54
g 2 -Prism DBl 9 30 16 46 176 49 287 465 41 23 46
Z% FB | 20 37 55 109 466 113 595 1236 122 42 77
Eo Prism 0.04 0.02 0.06 0.00 0.00 0.04 0.00 000 029 013 0.09
'é é priem DB| 0.04 0.10 0.11 0.10 0.08 0.21 0.12 0.03 017 031 048
2 FB | 0.02 0.06 019 0.32 0.09 0.28 0.28 0.03 0.28 044 046
= Prism 0.90 0.87 098 1.00 099 039 020 049 065 069 047
g -Prism DB| 0.93 092 0.5 0.99 098 068 041 070 090 094 0.67

FB| 0.93 0.93 0.88 0.99 098 064 044 071 082 0.73 051
Prism 0.91 090 0.8 0.76 066 036 056 071 068 0.73 0.67
DB| 0.93 093 096 0.81 095 086 050 092 093 092 0.80
FB| 0.93 0.94 050 0.82 094 075 044 095 085 0385 0.39
Prism 0.90 0.88 0.8 0.87 0.80 037 029 058 066 071 0.55
DB| 0.93 093 096 0.89 096 0.76 045 079 092 093 0.73
FB | 0.93 094 089 0.90 096 069 044 082 084 079 044
Prism 0.87 0.87 092 0.76 0.72 067 037 095 053 066 052
pB| 0.91 0.86 0.89 0.77 092 075 043 095 0.78 0.66 0.66
FB| 091 0.87 079 0.77 090 065 040 095 066 050 051
Prism 091 0.87 098 0.76 0.72 068 036 095 072 075 053
DB| 0.93 093 096 0.81 096 088 048 096 091 095 0.82
F8 | 0.93 0.93 0.88 0.82 095 0.84 047 096 083 089 0.54

G-Prism

G-Prism

Accuracy | F1 Score | Precision

G-Prism

G-Prism

Tentative
Accuracy

Fig. 4. Overview of empirical results. DB denotes Dynamic Boundaries and FB denotes
Fixed Boundaries

a) Accuracy b) Tentative Accuracy
BGPrism-DB OG-Prism-FB BG-Prism-DB OG-Prism-FB

0.15 |H 0.15
13 H I
I L

Ll 1] T Prism
-0.05 H ‘

e

> N X \ £ CHIN e 5 WS SRR e N S CH e 5

5@}\ W G (O “\oe« @& P W oo (o o & G o RS

RO o S N &7 o O o

Re A Qﬂ, o <« “‘ea @ A e <« « 5
e

O e
wo° Datasets o Datasets = %%

Fig. 5. Difference of Accuracy and Tentative Accuracy of G-Prism-DB and G-Prism-
FB compared with Prism

a) Recall b) F1 Score

045 B G-Prism-DB OG-Prism-FB o0as EG-Prism-DB O G-Prism-FB
035 035
025 025
0.05 H 0.05

m 1 . - 0o, Prism
0.05 H 005
0.15 015

T R S N T R IS O] & e N SR SN S e S

W e W 3 T e @ (o o o o W e i (0 (B @ (o o o

RO) o UM o S
o° Rl © ¥ T
o Datasets o Datasets

Fig. 6. Difference of Recall and F1 Score of G-Prism-DB and G-Prism-FB compared
with Prism

Regarding abstaining rate as illustrated in Figure 7 the predecessor Prism
seems to have a lower abstain rate in most cases (9 out of 11). Comparing both
version of G-Prism, G-Prism-DB achieves a lower abstain rate compared with
G-Prism-FB in 8 out of 11 cases.

Abstaining Rate
M G-Prism-DB OG-Prism-FB M Prism

glass ¥

breast tissue 1

user

page blocks =l

yeast 1

ecoli

banknote T,
blood... 1
Wine ——————)
seeds =_
iris =

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

Datsets

Fig. 7. Abstaining rates of G-Prism-DB, G-Prism-FB and Prism

4.3 Summary of Evaluation

Overall it can be seen that G-Prism outperforms Prism in most cases with
regards to all evaluation metrics except for the abstaining rate where Prism
performs better. This could potentially be linked to the high number of rules
induced by G-Prism approaches as can be seen in Figure 4. A high number of
rules suggests that the rule terms for each rule covers a lower number of instances
compared with Prism. However, what can also be seen is that G-Prism-DB in-
duces less rules compared with G-Prism-FB and also has a lower abstain rate

compared with G-Prism-FB. The difference between both G-Prism approaches is
that G-Prism-DB had a dynamic rule term boundaries that are either the same
or cover a wider range and thus also produce potentially less rules but covering
a larger number of training instances. Overall G-Prism-DB achieves a better
classification performance compared with Prism and G-Prism-FB. Alternative
descritisation methods, such as ChiMerge [10] and Chi square [9], prior to the
application of Prism will also be considered in the future.

5 Ongoing

Current ongoing work comprises four aspects of the current G-Prism with Dy-
namic Boundaries approach, which are (1) an improved parameter settings for
the dynamic boundaries and (2) the assumption of normally distributed at-
tributes. With respect to (1), the parameter settings for dynamic boundaries,
currently there is a user defined threshold of maximum boundary values to be
considered left and right of p, which is by default set to 6. However, the optimal
number of maximum steps to be considered may be higher or lower than the
by the user define threshold and this may also be dependent on the number of
training instances as a larger number of training instances is likely to produce
a larger number of distinct values. For attributes with a smaller number of dis-
tinctly different values it is more likely that the maximum boundary threshold is
further away from p compared with attributes with a larger number of distinctly
different values. In order to resolve this limitation we are currently considering
implementing a version of the algorithm using the interquartile range as an upper
rule term boundary to limit the rule term boundary search space. We expect that
this will produce rules with a larger coverage of data and thus reduce the abstain
rate. With respect to (2), the assumption of normally distributed attributes, we
have not tested for normal distribution in the data used in our experiments, yet
G-Prism-DB outperforms its predecessor Prism in many respects. Thus there is
the possibility that G-Prism may not perform as well on attributes that are not
normally distributed compared with its predecessor Prism. Therefore, we are
currently implementing a hybrid approach that tests if an attribute’s values are
normally distributed, if it they are, then the algorithm would use the G-Prism
approach, otherwise it would use the Prism approach to induce rule terms from
that a particular attribute. Moreover, future work comprises the development
of novel methods for rule term induction taking different underlying attribute
value distributions into consideration, such as i.e. Poison distribution. Also the
implementation of other discretisation methods based on ChiMerge [10] and Chi
square [9] for a further comparisons is planned in the future work.

6 Conclusion

The paper introduced a new rule term induction method based on Gauss Prob-
ability Density Distribution to produce a new rule term structure that improves
classification performance of the Prism family of algorithms. The new rule term

structure is an alternative structure to the currently used rule terms in the Prism
family of algorithms. The basic idea of the new rule term structure had been
introduced by the authors in [1] in a short paper but only limited evaluation
was conducted at the time. This paper offers two contributions (1) a thorough
evaluation of the originally proposed G-Prism algorithm and (2) an improvement
to the G-Prism rule term induction method by using more dynamic maximum
rule term boundaries. Both G-Prism approaches (with fixed and dynamic rule
term boundaries) and their predecessor Prism have been evaluated empirically
and comparatively using various metrics and datasets. Overall G-Prism with dy-
namic boundaries outperforms Prism and G-Prism with fixed boundaries in most
cases. Regarding abstain rate we saw a larger number of rejected test instances
by using G-Prism than by using Prism. We also observed that G-Prism (either
of the two versions) produces more rules and we assume that this is related to
a higher abstaining rate of G-Prism. Thus we are currently working on a more
elastic dynamic rule term boundary selection that will likely lead to a higher
coverage of data instances and thus is expected to reduce the abstaining rate
of G-Prism. Other ongoing work comprises also the development of approaches
that can be used to induce rule terms if an attribute is not normally distributed.

References

1. Almutairi, M., Stahl, F., Jennings, M., Le, T., Bramer, M.: Towards expressive
modular rule induction for numerical attributes. In Research and Development in
Intelligent Systems XXXIII: Incorporating Applications and Innovations in Intel-
ligent Systems XXIV, pages 229-235. Springer, 2016.

2. Bramer, M.: Automatic induction of classification rules from examples using n-
prism. In Research and development in intelligent systems XVI, pages 99-121.
Springer, 2000.

3. Bramer, M.: An information-theoretic approach to the pre-pruning of classification
rules. In B Neumann M Musen and R Studer, editors, Intelligent Information
Processing, pages 201-212. Kluwer, 2002.

4. Bramer, M.: Principles of data mining, volume 131. Springer, 2016.

5. Cendrowska, J.: Prism: An algorithm for inducing modular rules. International
Journal of Man-Machine Studies, 27(4):349-370, 1987.

6. Clark, P., Niblett, T.: The cn2 induction algorithm. Machine learning, 3(4):261—
283, 1989.

7. Cohen, W.: Fast effective rule induction. In Proceedings of the twelfth international
conference on machine learning, pages 115-123, 1995.

8. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier,
2011.

9. Imam, I., Michalski, R., Kerschberg, L.: Discovering attribute dependence in
databases by integrating symbolic learning and statistical analysis techniques.
In Proceeding of the AAAI-93 Workshop on Knowledge Discovery in Databases,
Washington DC, 1993.

10. Kerber, R.: Chimerge: Discretization of numeric attributes. In Proceedings of
the tenth national conference on Artificial intelligence, pages 123-128. Aaai Press,
1992.

11.

12.
13.
14.

15.

16.

Le, T., Stahl, F., Gomes, J., Gaber, M., and Di Fatta, G.: Computationally ef-
ficient rule-based classification for continuous streaming data. In Research and
Development in Intelligent Systems XXXI, pages 21-34. Springer, 2014.

Lichman, M.: UCI machine learning repository, 2013.

Quinlan, J.: C4. 5: programs for machine learning. Elsevier, 2014.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014.

Stahl, F., and Bramer, M.: Computationally efficient induction of classification
rules with the pmecri and j-pmcri frameworks. Knowledge-Based Systems, 35:49—
63, 2012.

Witten, 1., Frank, E., Hall, M., and Pal, C.: Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

