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Abstract 
 
One of the key technologies of data mining is the 
automatic induction of classification rules from 
examples. A variety of methods have been proposed 
and many comparative studies of methods have been 
carried out. However the absence of a widely 
available common platform has made it difficult to 
carry out sufficiently in-depth studies to establish the 
superiority of one method over another.  
 
This paper describes Inducer, a rule induction 
workbench which aims to provide a common platform 
with a graphical user interface for analysing a variety 
of rule induction algorithms and related strategies 
with a range of datasets, without the need for any 
programming by the user. The principal features of 
Inducer are described with reference to two well-
known rule induction algorithms. The paper concludes 
with an example of its use to compare these 
algorithms' performance when there are missing data 
values. 
 
 
1 Introduction 
 
The growing commercial importance of knowledge 
discovery and data mining techniques has stimulated 
new interest in the automatic induction of 
classification rules from examples, a field in which 
research can be traced back at least as far as the mid-
1960s [1]. 
 
Many practical decision-making tasks can be 
formulated as classification problems, for example 
 
• Customers who are likely to buy or not buy a 

particular product in a supermarket 
• People who are at high, medium or low risk of 

acquiring a certain illness 
• Student projects worthy of a distinction, merit, 

pass or fail grade 

• Objects on a radar display which correspond to 
vehicles, people, buildings or trees. 

 
In many fields, large collections of examples (often 
collected for other purposes) are readily available and 
automatically generating classification rules for such 
tasks has proved to be a realistic alternative to the 
standard Expert System approach of eliciting decision 
rules from experts. Reference [2] reports two large 
applications of 2,800 and 30,000+ rules, developed 
using automatic rule induction techniques in only one 
and 9 man-years, respectively, compared with the 
estimated 100 and 180 man-years needed to develop 
the celebrated 'conventional' Expert Systems Mycin 
and XCON. 
 
Most work in this field to date has concentrated on 
generating classification rules in the intermediate 
form of a decision tree using variants of the TDIDT 
(Top-Down Induction of Decision Trees) algorithm 
[3]. Although the decision tree representation is 
widely used, it suffers from the fundamental problem 
that the corresponding classification rules can be 
excessively complex owing to the need for the rules 
invariably to 'link together' to form a tree structure. As 
rule induction techniques are applied to larger and 
larger commercial datasets this weakness is likely to 
become increasingly important. 
 
One approach to overcoming this problem is the rule 
induction algorithm Prism [4,5], which generates 
classification rules directly, term by term from the 
training set without using the intermediate 
representation of a decision tree. 
 
Algorithms for generating classification rules using 
other approaches (such as neural networks) have also 
been developed but will not be considered further in 
this paper. 
 
Although there are many comparative studies of 
different algorithms reported in the research literature, 
the absence of a widely available common platform 



for this work has inevitably made it difficult to carry 
out sufficiently in-depth studies to establish the 
relative strengths and weaknesses of different 
methods for particular types of application domain.  
 
Two systems which seek to provide a common 
platform for the experimenter are MLC++ [6], a 
library of C++ classes for supervised machine 
learning which can be incorporated into a user's own 
programs, and WEKA [7], a library of machine 
learning algorithms written in Java which can be run 
from a Java command line. 
 
The Inducer rule induction workbench is concerned 
specifically with the generation of classification rules 
and is aimed at investigators who prefer to use a 
graphical interface without the need for any 
programming or use of Unix commands. The package 
incorporates a wide range of user options and also 
permits the creation of a number of output files to 
facilitate further analysis. 
 
The current version of Inducer includes 
implementations of TDIDT and N-Prism (a revised 
version of Prism, as described in [5]), as 
representatives of two of the most important classes of 
algorithm for automatic induction of classification 
rules. Further algorithms and additional user facilities 
will be added in future versions. 
 
Following a brief introduction to the basic TDIDT and 
Prism algorithms, this paper goes on to describe the 
principal features of Inducer. A brief description of a 
series of experiments to compare TDIDT and N-Prism 
within the common framework of Inducer is also 
given. 
 
 
2 Automatic Induction of 
Classification Rules 
 
2.1 Example and Basic Terminology 
The following example is taken from [3]. Table 1 
records a golf player's decisions on whether or not to 
play each day based on that day's weather conditions. 
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Table 1. The Golf Training Set 
 
What combination of weather conditions determines 
whether the decision is to play or not to play? 
 
The standard terminology is to call Table 1 a training 
set and each of its rows an instance. Each instance 
comprises the values of a number of attributes 
(variables) and the value of a corresponding 
classification. Attributes can be either categorical 
(such as outlook) or continuous such as humidity. 
However, continuous attributes need to be split into a 
discrete set of ranges (e.g. humidity <= 75 or > 75) 
before use. 
 
One possible set of classification rules that can be 
derived from Table 1 is as follows: 
 
1. IF outlook = sunny AND humidity <= 75  

THEN Class = play 
2. IF outlook = sunny AND humidity > 75 

THEN Class = don't play 
3. IF outlook = overcast THEN Class = play 
4. IF outlook = rain AND windy = true  

THEN Class = don't play 
5. IF outlook = rain AND windy = false  

THEN Class = play 
 

2.2 Inducing Decision Trees: The TDIDT 
Algorithm 
The TDIDT algorithm constructs a set of 
classification rules via the intermediate representation 
of a decision tree.  
 
The algorithm begins by choosing an attribute and 
then divides the training set into subsets 
corresponding to each of its possible values. Each 
resulting branch of the tree then leads to either a leaf 
node, if all the instances in the corresponding subset 
have the same classification or otherwise a subtree 
constructed using the same algorithm recursively. 
 



A possible decision tree corresponding to the above 
table is shown in Figure 1. 
 

To Play or Not to Play?

<= 75 > 75 true false

sunny overcast rain

play don't play

humidity play

don't play play

windy

outlook

Figure 1. Decision Tree Corresponding to Table 1 
 
This tree corresponds to the five classification rules 
given in Section 2.1, one rule per branch. 
 
In general there are many possible decision trees and 
thus many different sets of rules corresponding to any 
given training set. The aim is to generate the set of 
classification rules that gives the best possible level of 
predictive accuracy when applied to a table of 
previously unseen instances, known as a test set. 
 
The TDIDT algorithm can be summarised as follows. 
 
IF all cases in the training set belong to the same class 
   THEN return the value of the class 
   ELSE   
       (a) select an attribute to split on * 
       (b) sort the instances in the training set into non-

empty subsets, one for each attribute value 
       (c) return a tree with one branch for each subset, 

each branch having a descendant subtree or a 
class value produced by applying the 
algorithm recursively for each subset in turn. 

 
* No attribute may be selected more than once in any 
branch. 
 
Provided that no two instances with the same values 
of all the attributes belong to different classes, any 
method of selecting attributes at step (a) will suffice to 
produce a decision tree. However the predictive value 
of the corresponding set of classification rules on 
unseen instances in a test set may depend critically on 
how it is done. The most common attribute selection 
criterion is probably Information Gain [3], which uses 
the information theoretic measure entropy at each 
stage to split on the attribute which maximises the 
expected gain of information from applying the 

additional test. This is the approach adopted in the 
well-known system C4.5 [3].  
 
2.3 Inducing Decision Rules: The Prism 
Algorithm 
The basic Prism algorithm can be summarised as 
follows, assuming that there are n (>1) possible 
classes. Further details are given in [5]. 
 
For each class i from 1 to n inclusive: 
 
(1) Calculate the probability that class = i for each 

attribute-value pair 
(2) Select the attribute-value pair with the maximum 

probability and create a subset of the training set 
comprising all instances with the selected 
combination (for all classes) 

(3) Repeat 1 and 2 for this subset until it contains only 
instances of class i. The induced rule is then the 
conjunction of all the attribute-value pairs 
selected in creating this subset 

(4) Remove all instances covered by this rule from the 
training set 

 
Repeat 1-4 until all instances of class i have been 
removed 
 
 
3 The Inducer Rule Induction 
Workbench 
 
3.1 Introduction to Inducer 
The Inducer rule induction workbench [8] is one of a 
suite of packages developed to facilitate experiments 
with different techniques for generating classification 
rules. Inducer is implemented in Java (version 1.1) in 
the interests of portability and is available both as a 
standalone application and also as an applet.  
 
The package was implemented partly for teaching 
purposes but principally to facilitate practical 
experimentation with a range of rule induction 
algorithms and associated strategies. It is written in a 
modular fashion to enable further algorithms and 
strategies to be added relatively easily in the future. 
 
Figure 2 shows a screen image of Inducer running the 
hypothyroid dataset ('hypo') from the repository of 
machine learning datasets at the University of 
California at Irvine (UCI) [9]. 
 



Figure 2. Inducer Screen Image 
 
3.2 Basic Use 
Inducer is designed to be easy to use. It has a 
graphical user interface which enables the expert user 
to select from a wide range of options, but for the 
inexperienced user it requires only two mouse clicks 
to obtain a set of classification rules: one to select a 
dataset from a menu in the top middle of the screen 
and another to press the go button in the top left-hand 
corner. 
 
The default rule generation algorithm used is TDIDT, 
with entropy (or information gain) as the attribute 
selection criterion, as described in Section 2.2 above. 
Other parameters all have reasonable default values 
compatible with these. 
 
There are limitations on the maximum size of training 
set and test set that can be processed, the maximum 
number of rules that can be generated etc. These are 
platform dependent and can be obtained by the user 
pressing the info (information) button, which displays 
the contents of file inducer.inf. Execution times are 
typically no more than a few seconds for datasets of 
the size of most of those in the UCI Repository. 
 
Having generated a set of classification rules Inducer 
then runs the rules first against the original training set 
and then against a test set of previously unseen data 
(provided that such a test set exists and that the Use 
Test Set option has been selected). 
 
For each training and test set examined Inducer 
calculates and displays a confusion matrix with one 
row and column per classification and one additional 
column corresponding to unclassified instances. If 

there are N possible classifications the matrix is thus 
of N rows by (N+1) columns. 
 
The entry for row i, column j corresponds to the 
number of instances in the dataset with a correct 
classification of i and a computed classification of j. 
Entries in column N+1 occur when the induced rule 
set is unable to make a classification of a given 
instance. 
 
In the case of a perfect classification all non-zero 
entries in the confusion matrix will occur on the 
leading diagonal of the main N x N matrix, with none 
in the rightmost ('unclassified') column. This will 
generally occur when the classification rules are run 
against the original training set which was used to 
generate them, but this is not invariably the case, e.g. 
if cutoffs (as described in Section 3.4.2) were applied 
during the rule generation process. 
 
As well as the confusion matrix, Inducer displays the 
number of correct matches, incorrect matches and 
unclassified instances and the percentage of correct 
matches. 
 
The options available for the experienced user are 
described in Sections 3.3 to 3.11 below. The current 
values of all system parameters, including those not 
displayed on the screen, can be obtained by the user 
by pressing the settings button at any time. 
 
3.3 Data Input Parameters 
 
3.3.1 Dataset Selection 
There are currently 24 datasets available for selection 
from the default input file directory. These are mainly 
taken from the UCI Repository [9]. Alternative input 
file directories can be specified if preferred. The 
format of input files is essentially that specified in [3]. 
Each dataset comprises a name file, a training set and 
in most cases also a test set. The first line of the name 
file gives a list of all possible classifications. 
Subsequent lines give details of each of the attributes 
in turn, with the name of the attribute followed by 
either a list of its possible values, in the case of a 
categorical attribute, or the word continuous, denoting 
a numerical attribute, or ignore. The facility to specify 
an attribute as ignore is a valuable one, enabling the 
user easily to experiment with the effect of 'turning 
off' one or more attributes without having to change 
the data. 
 
Training sets and test sets have the same format. Each 



record corresponds to one instance and comprises the 
values of each of the attributes in the order in which 
they are listed in the name file, separated by commas 
as delimiters, followed by the corresponding 
classification as the last field in the record. 
 
3.3.2 Ignore Continuous Attributes 
The TDIDT algorithm as implemented in Inducer has 
a facility for local discretization of continuous 
attributes, i.e. dividing the values of an attribute X 
into two parts, X<a and X>=a, say, at each stage of 
the tree generation process. However, many rule 
induction algorithms including N-Prism have no 
facilities for dealing (directly) with continuous 
attributes and it is sometimes helpful for the user to be 
able to 'turn off' such attributes, effectively treating 
them as if they were specified as ignore attributes in 
the name file. 
 
3.3.3 Missing Value Strategy 
For many practical applications the value of some 
attributes (or even in some cases the correct 
classification) may not be available for some or 
perhaps even all of the instances. An important 
practical requirement of a rule induction algorithm in 
many domains is the ability to make an accurate 
prediction of the classification of unseen test data 
even when there are missing values in the training set, 
the test set or both. Missing values in both training 
and test sets are conventionally identified by the 
symbol '?'. 
 
Two missing value strategies are available in Inducer. 
 
(a) Ignore any instance in either the training or the 

test set that contains one or more missing values. 
(b) Replace any missing values for a categorical 

attribute or for the classification by the most 
frequently occurring (non-missing) value for that 
attribute or classification and any missing values 
for a continuous attribute by the average of the 
(non-missing) values of that attribute. This is the 
default setting. 

 
3.4 Rule Generation Parameters 
 
3.4.1 Attribute Selection Method 
There are five attribute selection criteria available 
when the TDIDT algorithm is selected, the last three 
being provided for teaching and comparative purposes 
only. 
 
(1) entropy (or information gain) - the default 

(2) gain ratio - a measure devised by Quinlan [3] 
aimed at overcoming the bias inherent in the use 
of information gain towards selecting attributes 
with a large number of values 

(3) takefirst - work through the classes specified in 
the name file in order, from left to right 

(4) takelast - as (3) but work from right to left 
(5) random - select at random. 
 
3.4.2 Cutoffs During Rule Generation 
A problem that often arises during rule generation is 
the over-fitting of rules to data. 
 
A rule such as   

IF a = 1 AND b = 1 AND c = 3 AND d = 2 
THEN Class=3 

which is correct but corresponds to only a small 
number of instances in the training set may be of little 
value in predicting the classification for unseen data. 
 
Generalising such a rule by stopping the rule 
generation process before the left-hand side is 
complete, e.g.  IF a = 1 AND b = 1 THEN Class=3 
may be less accurate as far as the training set is 
concerned but of considerably more value when 
classifying data in an unseen test set. 
 
Inducer has facilities for the user to specify two 
different types of cutoff during rule generation: 
 
(a) a depth cutoff after either 1, 2 or 5 terms have 

been generated  for a given rule (the default is 
'unlimited') 

(b) a size cutoff if the number of instances in the 
training set currently under consideration is below 
either 5 or 10 (the default is zero). 

 
For both types of cutoff the result is a partly complete 
left-hand side of a rule, together with a subset of the 
training set containing instances with more than one 
classification, for which further subdivision has been 
inhibited. The rule is then either discarded or a single 
classification is taken depending on the clash 
handling strategy selected, as described in Section 
3.4.4 below. 
 
3.4.3 Discarding Rules on the Basis of 
'Interestingness' 
A topic of growing importance in recent years is that 
of rule 'interestingness' [10], the aim of which is to 
identify those rules in a generated ruleset which are 
likely to be of value in classifying unseen instances. 
There are many measures of rule interestingness 



available, a basic one being Piatetsky-Shapiro's RI 
measure [11], which gives the difference between the 
actual number of instances matched by the rule in the 
training set and the number that would be expected by 
chance. Inducer allows the user to specify that a rule 
should be discarded (and not displayed) if the value of 
RI is less than zero, one or five. The default is 'never 
discard'. 
 
3.4.4 Handling Clashes During Rule 
Generation 
A clash occurs when a rule induction algorithm 
encounters a subset of the training set which has more 
than one classification but which cannot be further 
processed, either because there are no more attributes 
available or because of a cutoff. Such a subset is 
called a clash set. 
 
Two strategies are currently implemented in Inducer 
for dealing with clashes encountered during rule 
generation: 
 
(a) discard all instances in the clash set 
(b) (default setting) treat the clash set as if all the 

instances in it had the same classification, i.e. the 
one that occurs most frequently. In the case of 
TDIDT a new rule is created. For N-Prism the 
rule is created only if the most frequently 
occurring classification is the one for which rules 
are currently being generated, otherwise the 
instances are discarded. 

 
3.4.5 Dealing with Continuous Attributes 
Inducer has a parameter that specifies how 
continuous attributes are to be handled during rule 
generation (TDIDT only): 
 
(a) the attribute may be used once only in any given 

rule, as for categorical attributes 
(b) (the default setting) the attribute may be used, i.e. 

subdivided into ranges, more than once in a rule if 
necessary, e.g. 
IF a = yes AND x < 6.4 AND b=3 AND x < 3.2 
THEN Class = 2 

 
Inducer automatically combines multiple ranges of a 
continuous attribute; e.g. the above rule would be 
treated as 
IF a = yes AND x < 3.2 AND b = 3 THEN Class = 2 
 
3.5 Rule Execution Parameters 
A 'default to majority class' facility is provided to 
force Inducer to classify all instances in the test set. 

Instances that would otherwise be unclassified are 
assigned to the most commonly occurring class. This 
is likely to be of practical value in domains where it is 
important to maximise the number of correct 
classifications and there is little or no penalty for 
incorrect ones. The default setting is false. 
 
3.6 Display Parameters 
Options are available (all defaulting to 'false') to 
display: 
 
(a) the frequency of occurrence of each value of each 

categorical attribute, together with the minimum, 
maximum and average values of each continuous 
attribute 

(b) the value of the RI measure for each rule 
(c) details of clashes encountered during rule 

generation. 
 
There is also an option to suppress the display of rules 
to the screen. This can speed up execution 
considerably. The total number of rules and terms and 
the average number of terms per rule are still 
displayed. 
 
3.7 Saved Rule Parameters 
Two parameters are available in connection with the 
saving of rules (the default for both is false): 
 
(a) Save Rules - Save rules in a saved rule file in a 

coded form, together with the values of the main 
system parameter settings. Rule files are output to 
the saved rules directory, which is set by the 
Inducer initialisation file (see Section 3.10). 

(b) Use Saved Rules - Read in rules from a saved rule 
file for the specified dataset. No processing of the 
training set takes place and the values of all rule 
generation parameters are ignored. 

 
3.8 Log File 
Every time the go button is pressed details of the main 
system parameter settings are recorded in a log file 
inducer.log, together with the number of rules and 
terms generated and the number of instances correctly 
classified, incorrectly classified or unclassified in the 
training set and (if applicable) the test set. 
 
3.9 Other Output Files 
The default for all four selections is false. All output 
files are saved to the output files directory, which is 
set by the Inducer initialisation file. 
 



(a) A number of interestingness measures associated 
with each rule, including RI, are output to a file. 

(b) Statistics giving the number of correctly 
classified, incorrectly classified and unclassified 
instances and the confusion matrix are output for 
the training set and (if selected) the test set for the 
chosen dataset. 

(c) Detailed information about any misclassified 
instances can be output to an 'exceptions' file. 

(d) Selecting the 'rule output to file' option enables 
the user to output the rules for possible use by 
another language or package. Three output 
formats are available: 
• a Java method 
• a set of Prolog clauses 
• (TDIDT only) a script file suitable for input 

to the SPSS flowcharting package AllClear. 
 
3.10 Initialisation File 
The initialisation file inducer.ini is invoked 
automatically when the application version of Inducer 
starts executing. It is used to specify the location of 
the input, output and rule file directories and the file 
extensions for the name, training and test sets, plus the 
saved rules file, the 'output rules' file and the rule 
interestingness measures, exceptions and statistics 
files. 
 
For the applet version an equivalent effect to the 
initialisation file is achieved by embedding the 
information in the web page used to invoke the applet 
using the <PARAM> tag. 
 
3.11 Batch Mode 
An option is available (default setting false) to run 
Inducer in batch mode. When this is selected details 
of the input file, output file and saved rule file 
directories are taken from the file inducer.bat. These 
are followed by an unlimited number of triples 
specifying a name file, a training set and a test set. 
Pressing the go button causes Inducer to run on each 
of these triples of files in turn. All other parameter 
settings are taken from the graphical interface. 
 
Running Inducer in batch mode enables a substantial 
series of experiments, say with a fixed name file and 
training set and a range of different test sets, to be run 
in a simple and rapid fashion, with the output 
automatically recorded in the log file. 
 
 
 

4 Experiments in Rule Induction 
 
The availability of the Inducer package makes it 
straightforward to conduct even very extensive 
comparisons of different rule induction algorithms 
and related strategies. A number of comparisons of 
TDIDT and N-Prism are reported in [5]. 
 
As a further example, an experiment was conducted to 
compare the sensitivity of the two algorithms to 
missing values. The dataset used for this experiment 
was the Vote dataset from the UCI Repository. The 
dataset has 16 attributes (all categorical), 2 classes 
(Democrat and Republican), with 300 instances in the 
training set and 135 in the test set.  
 
Using Datagen, another of the packages in the 
Inducer suite, missing values were systematically 
introduced into the training and test sets in a random 
fashion with frequency from 10% up to 70%. Using 
the batch mode facility of Inducer the classification 
accuracy of the two algorithms was then computed for 
missing value levels of 0%, 10%, 20%, 30%, 50% and 
70% in each of the training and test sets, as a single 
batch run. 
 
Both algorithms used the same strategy for dealing 
with missing values, with each missing value being 
replaced by the most frequently occurring value when 
generating or applying the classification rules. 
 

Vote Dataset: Number of Terms 
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Figure 3. Number of Terms Generated for Varying 
Levels of Missing Values in the 'Vote' Training Set  
 
The two algorithms produced virtually identical 
numbers of rules for each level of missing values in 
the training set. With 70% missing values there is 
some advantage to N-Prism (65 rules compared with 
73). However, Figure 3 shows that N-Prism is 
considerably better than TDIDT when measured by 
the total number of terms generated and thus the 
average number of terms per rule. With no missing 



values N-Prism generates a total of only 89 terms 
compared with 156 for TDIDT. Most strikingly, the 
total number of terms generated by N-Prism is not 
much more with 70% missing values (306 terms) than 
with 20% (296). By contrast TDIDT generates 462 
terms with 20% missing values and this rises to 596 as 
the level of missing values increases to 70%. 

 

Vote Dataset: 50% Missing Values in 
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Figure 4. Effects of Introducing Missing Values in the 
‘Vote’ Training and Test Sets 
 
Figure 4 shows the comparative levels of 
classification accuracy of the two algorithms for  
missing value levels of 20% and 50% in the training 
set. Both algorithms perform well overall, even with 
high levels of missing values in both sets. 
 
One way to extend these experiments would be to 
examine the effect of pre-pruning the rules, e.g. by 
means of a depth cutoff during the rule generation 
process, or of post-pruning them, say by discarding 
any rules with too low a value of the RI rule 
interestingness measure. 
 
In general, a range of such experiments would need to 
be carried out to determine the most appropriate rule 
induction technique for a given application. 
 
 

5 Conclusions 
 
The Inducer rule induction workbench provides a 
powerful framework for in-depth experiments with 
alternative rule induction algorithms and related 
strategies. One such experiment has been reported 
briefly above. The package has been developed in a 
modular fashion to facilitate the addition of further 
algorithms and strategies as required. 
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