
Inducer: a Rule Induction Workbench for Data Mining

Max Bramer
Faculty of Technology
University of Portsmouth

Portsmouth, UK
Email: Max.Bramer@port.ac.uk Fax: +44-2392-843030

Abstract

One of the key technologies of data mining is the
automatic induction of classification rules from
examples. A variety of methods have been proposed
and many comparative studies of methods have been
carried out. However the absence of a widely
available common platform has made it difficult to
carry out sufficiently in-depth studies to establish the
superiority of one method over another.

This paper describes Inducer, a rule induction
workbench which aims to provide a common platform
with a graphical user interface for analysing a variety
of rule induction algorithms and related strategies
with a range of datasets, without the need for any
programming by the user. The principal features of
Inducer are described with reference to two well-
known rule induction algorithms. The paper concludes
with an example of its use to compare these
algorithms' performance when there are missing data
values.

1 Introduction

The growing commercial importance of knowledge
discovery and data mining techniques has stimulated
new interest in the automatic induction of
classification rules from examples, a field in which
research can be traced back at least as far as the mid-
1960s [1].

Many practical decision-making tasks can be
formulated as classification problems, for example

• Customers who are likely to buy or not buy a

particular product in a supermarket
• People who are at high, medium or low risk of

acquiring a certain illness
• Student projects worthy of a distinction, merit,

pass or fail grade

• Objects on a radar display which correspond to
vehicles, people, buildings or trees.

In many fields, large collections of examples (often
collected for other purposes) are readily available and
automatically generating classification rules for such
tasks has proved to be a realistic alternative to the
standard Expert System approach of eliciting decision
rules from experts. Reference [2] reports two large
applications of 2,800 and 30,000+ rules, developed
using automatic rule induction techniques in only one
and 9 man-years, respectively, compared with the
estimated 100 and 180 man-years needed to develop
the celebrated 'conventional' Expert Systems Mycin
and XCON.

Most work in this field to date has concentrated on
generating classification rules in the intermediate
form of a decision tree using variants of the TDIDT
(Top-Down Induction of Decision Trees) algorithm
[3]. Although the decision tree representation is
widely used, it suffers from the fundamental problem
that the corresponding classification rules can be
excessively complex owing to the need for the rules
invariably to 'link together' to form a tree structure. As
rule induction techniques are applied to larger and
larger commercial datasets this weakness is likely to
become increasingly important.

One approach to overcoming this problem is the rule
induction algorithm Prism [4,5], which generates
classification rules directly, term by term from the
training set without using the intermediate
representation of a decision tree.

Algorithms for generating classification rules using
other approaches (such as neural networks) have also
been developed but will not be considered further in
this paper.

Although there are many comparative studies of
different algorithms reported in the research literature,
the absence of a widely available common platform

for this work has inevitably made it difficult to carry
out sufficiently in-depth studies to establish the
relative strengths and weaknesses of different
methods for particular types of application domain.

Two systems which seek to provide a common
platform for the experimenter are MLC++ [6], a
library of C++ classes for supervised machine
learning which can be incorporated into a user's own
programs, and WEKA [7], a library of machine
learning algorithms written in Java which can be run
from a Java command line.

The Inducer rule induction workbench is concerned
specifically with the generation of classification rules
and is aimed at investigators who prefer to use a
graphical interface without the need for any
programming or use of Unix commands. The package
incorporates a wide range of user options and also
permits the creation of a number of output files to
facilitate further analysis.

The current version of Inducer includes
implementations of TDIDT and N-Prism (a revised
version of Prism, as described in [5]), as
representatives of two of the most important classes of
algorithm for automatic induction of classification
rules. Further algorithms and additional user facilities
will be added in future versions.

Following a brief introduction to the basic TDIDT and
Prism algorithms, this paper goes on to describe the
principal features of Inducer. A brief description of a
series of experiments to compare TDIDT and N-Prism
within the common framework of Inducer is also
given.

2 Automatic Induction of
Classification Rules

2.1 Example and Basic Terminology
The following example is taken from [3]. Table 1
records a golf player's decisions on whether or not to
play each day based on that day's weather conditions.

Outlook

Temp
(°F)

Humidity
(%)

Windy Class

sunny
sunny
sunny
sunny

75
80
85
72

70
90
85
95

true
true
false
false

play
don't play
don't play
don't play

sunny
overcast
overcast
overcast
overcast

rain
rain
rain
rain
rain

69
72
83
64
81
71
65
75
68
70

70
90
78
65
75
80
70
80
80
96

false
true
false
true
false
true
true
false
false
false

play
play
play
play
play

don't play
don't play

play
play
play

Table 1. The Golf Training Set

What combination of weather conditions determines
whether the decision is to play or not to play?

The standard terminology is to call Table 1 a training
set and each of its rows an instance. Each instance
comprises the values of a number of attributes
(variables) and the value of a corresponding
classification. Attributes can be either categorical
(such as outlook) or continuous such as humidity.
However, continuous attributes need to be split into a
discrete set of ranges (e.g. humidity <= 75 or > 75)
before use.

One possible set of classification rules that can be
derived from Table 1 is as follows:

1. IF outlook = sunny AND humidity <= 75

THEN Class = play
2. IF outlook = sunny AND humidity > 75

THEN Class = don't play
3. IF outlook = overcast THEN Class = play
4. IF outlook = rain AND windy = true

THEN Class = don't play
5. IF outlook = rain AND windy = false

THEN Class = play

2.2 Inducing Decision Trees: The TDIDT
Algorithm
The TDIDT algorithm constructs a set of
classification rules via the intermediate representation
of a decision tree.

The algorithm begins by choosing an attribute and
then divides the training set into subsets
corresponding to each of its possible values. Each
resulting branch of the tree then leads to either a leaf
node, if all the instances in the corresponding subset
have the same classification or otherwise a subtree
constructed using the same algorithm recursively.

A possible decision tree corresponding to the above
table is shown in Figure 1.

To Play or Not to Play?

<= 75 > 75 true false

sunny overcast rain

play don't play

humidity play

don't play play

windy

outlook

Figure 1. Decision Tree Corresponding to Table 1

This tree corresponds to the five classification rules
given in Section 2.1, one rule per branch.

In general there are many possible decision trees and
thus many different sets of rules corresponding to any
given training set. The aim is to generate the set of
classification rules that gives the best possible level of
predictive accuracy when applied to a table of
previously unseen instances, known as a test set.

The TDIDT algorithm can be summarised as follows.

IF all cases in the training set belong to the same class
 THEN return the value of the class
 ELSE
 (a) select an attribute to split on *
 (b) sort the instances in the training set into non-

empty subsets, one for each attribute value
 (c) return a tree with one branch for each subset,

each branch having a descendant subtree or a
class value produced by applying the
algorithm recursively for each subset in turn.

* No attribute may be selected more than once in any
branch.

Provided that no two instances with the same values
of all the attributes belong to different classes, any
method of selecting attributes at step (a) will suffice to
produce a decision tree. However the predictive value
of the corresponding set of classification rules on
unseen instances in a test set may depend critically on
how it is done. The most common attribute selection
criterion is probably Information Gain [3], which uses
the information theoretic measure entropy at each
stage to split on the attribute which maximises the
expected gain of information from applying the

additional test. This is the approach adopted in the
well-known system C4.5 [3].

2.3 Inducing Decision Rules: The Prism
Algorithm
The basic Prism algorithm can be summarised as
follows, assuming that there are n (>1) possible
classes. Further details are given in [5].

For each class i from 1 to n inclusive:

(1) Calculate the probability that class = i for each

attribute-value pair
(2) Select the attribute-value pair with the maximum

probability and create a subset of the training set
comprising all instances with the selected
combination (for all classes)

(3) Repeat 1 and 2 for this subset until it contains only
instances of class i. The induced rule is then the
conjunction of all the attribute-value pairs
selected in creating this subset

(4) Remove all instances covered by this rule from the
training set

Repeat 1-4 until all instances of class i have been
removed

3 The Inducer Rule Induction
Workbench

3.1 Introduction to Inducer
The Inducer rule induction workbench [8] is one of a
suite of packages developed to facilitate experiments
with different techniques for generating classification
rules. Inducer is implemented in Java (version 1.1) in
the interests of portability and is available both as a
standalone application and also as an applet.

The package was implemented partly for teaching
purposes but principally to facilitate practical
experimentation with a range of rule induction
algorithms and associated strategies. It is written in a
modular fashion to enable further algorithms and
strategies to be added relatively easily in the future.

Figure 2 shows a screen image of Inducer running the
hypothyroid dataset ('hypo') from the repository of
machine learning datasets at the University of
California at Irvine (UCI) [9].

Figure 2. Inducer Screen Image

3.2 Basic Use
Inducer is designed to be easy to use. It has a
graphical user interface which enables the expert user
to select from a wide range of options, but for the
inexperienced user it requires only two mouse clicks
to obtain a set of classification rules: one to select a
dataset from a menu in the top middle of the screen
and another to press the go button in the top left-hand
corner.

The default rule generation algorithm used is TDIDT,
with entropy (or information gain) as the attribute
selection criterion, as described in Section 2.2 above.
Other parameters all have reasonable default values
compatible with these.

There are limitations on the maximum size of training
set and test set that can be processed, the maximum
number of rules that can be generated etc. These are
platform dependent and can be obtained by the user
pressing the info (information) button, which displays
the contents of file inducer.inf. Execution times are
typically no more than a few seconds for datasets of
the size of most of those in the UCI Repository.

Having generated a set of classification rules Inducer
then runs the rules first against the original training set
and then against a test set of previously unseen data
(provided that such a test set exists and that the Use
Test Set option has been selected).

For each training and test set examined Inducer
calculates and displays a confusion matrix with one
row and column per classification and one additional
column corresponding to unclassified instances. If

there are N possible classifications the matrix is thus
of N rows by (N+1) columns.

The entry for row i, column j corresponds to the
number of instances in the dataset with a correct
classification of i and a computed classification of j.
Entries in column N+1 occur when the induced rule
set is unable to make a classification of a given
instance.

In the case of a perfect classification all non-zero
entries in the confusion matrix will occur on the
leading diagonal of the main N x N matrix, with none
in the rightmost ('unclassified') column. This will
generally occur when the classification rules are run
against the original training set which was used to
generate them, but this is not invariably the case, e.g.
if cutoffs (as described in Section 3.4.2) were applied
during the rule generation process.

As well as the confusion matrix, Inducer displays the
number of correct matches, incorrect matches and
unclassified instances and the percentage of correct
matches.

The options available for the experienced user are
described in Sections 3.3 to 3.11 below. The current
values of all system parameters, including those not
displayed on the screen, can be obtained by the user
by pressing the settings button at any time.

3.3 Data Input Parameters

3.3.1 Dataset Selection
There are currently 24 datasets available for selection
from the default input file directory. These are mainly
taken from the UCI Repository [9]. Alternative input
file directories can be specified if preferred. The
format of input files is essentially that specified in [3].
Each dataset comprises a name file, a training set and
in most cases also a test set. The first line of the name
file gives a list of all possible classifications.
Subsequent lines give details of each of the attributes
in turn, with the name of the attribute followed by
either a list of its possible values, in the case of a
categorical attribute, or the word continuous, denoting
a numerical attribute, or ignore. The facility to specify
an attribute as ignore is a valuable one, enabling the
user easily to experiment with the effect of 'turning
off' one or more attributes without having to change
the data.

Training sets and test sets have the same format. Each

record corresponds to one instance and comprises the
values of each of the attributes in the order in which
they are listed in the name file, separated by commas
as delimiters, followed by the corresponding
classification as the last field in the record.

3.3.2 Ignore Continuous Attributes
The TDIDT algorithm as implemented in Inducer has
a facility for local discretization of continuous
attributes, i.e. dividing the values of an attribute X
into two parts, X<a and X>=a, say, at each stage of
the tree generation process. However, many rule
induction algorithms including N-Prism have no
facilities for dealing (directly) with continuous
attributes and it is sometimes helpful for the user to be
able to 'turn off' such attributes, effectively treating
them as if they were specified as ignore attributes in
the name file.

3.3.3 Missing Value Strategy
For many practical applications the value of some
attributes (or even in some cases the correct
classification) may not be available for some or
perhaps even all of the instances. An important
practical requirement of a rule induction algorithm in
many domains is the ability to make an accurate
prediction of the classification of unseen test data
even when there are missing values in the training set,
the test set or both. Missing values in both training
and test sets are conventionally identified by the
symbol '?'.

Two missing value strategies are available in Inducer.

(a) Ignore any instance in either the training or the

test set that contains one or more missing values.
(b) Replace any missing values for a categorical

attribute or for the classification by the most
frequently occurring (non-missing) value for that
attribute or classification and any missing values
for a continuous attribute by the average of the
(non-missing) values of that attribute. This is the
default setting.

3.4 Rule Generation Parameters

3.4.1 Attribute Selection Method
There are five attribute selection criteria available
when the TDIDT algorithm is selected, the last three
being provided for teaching and comparative purposes
only.

(1) entropy (or information gain) - the default

(2) gain ratio - a measure devised by Quinlan [3]
aimed at overcoming the bias inherent in the use
of information gain towards selecting attributes
with a large number of values

(3) takefirst - work through the classes specified in
the name file in order, from left to right

(4) takelast - as (3) but work from right to left
(5) random - select at random.

3.4.2 Cutoffs During Rule Generation
A problem that often arises during rule generation is
the over-fitting of rules to data.

A rule such as

IF a = 1 AND b = 1 AND c = 3 AND d = 2
THEN Class=3

which is correct but corresponds to only a small
number of instances in the training set may be of little
value in predicting the classification for unseen data.

Generalising such a rule by stopping the rule
generation process before the left-hand side is
complete, e.g. IF a = 1 AND b = 1 THEN Class=3
may be less accurate as far as the training set is
concerned but of considerably more value when
classifying data in an unseen test set.

Inducer has facilities for the user to specify two
different types of cutoff during rule generation:

(a) a depth cutoff after either 1, 2 or 5 terms have

been generated for a given rule (the default is
'unlimited')

(b) a size cutoff if the number of instances in the
training set currently under consideration is below
either 5 or 10 (the default is zero).

For both types of cutoff the result is a partly complete
left-hand side of a rule, together with a subset of the
training set containing instances with more than one
classification, for which further subdivision has been
inhibited. The rule is then either discarded or a single
classification is taken depending on the clash
handling strategy selected, as described in Section
3.4.4 below.

3.4.3 Discarding Rules on the Basis of
'Interestingness'
A topic of growing importance in recent years is that
of rule 'interestingness' [10], the aim of which is to
identify those rules in a generated ruleset which are
likely to be of value in classifying unseen instances.
There are many measures of rule interestingness

available, a basic one being Piatetsky-Shapiro's RI
measure [11], which gives the difference between the
actual number of instances matched by the rule in the
training set and the number that would be expected by
chance. Inducer allows the user to specify that a rule
should be discarded (and not displayed) if the value of
RI is less than zero, one or five. The default is 'never
discard'.

3.4.4 Handling Clashes During Rule
Generation
A clash occurs when a rule induction algorithm
encounters a subset of the training set which has more
than one classification but which cannot be further
processed, either because there are no more attributes
available or because of a cutoff. Such a subset is
called a clash set.

Two strategies are currently implemented in Inducer
for dealing with clashes encountered during rule
generation:

(a) discard all instances in the clash set
(b) (default setting) treat the clash set as if all the

instances in it had the same classification, i.e. the
one that occurs most frequently. In the case of
TDIDT a new rule is created. For N-Prism the
rule is created only if the most frequently
occurring classification is the one for which rules
are currently being generated, otherwise the
instances are discarded.

3.4.5 Dealing with Continuous Attributes
Inducer has a parameter that specifies how
continuous attributes are to be handled during rule
generation (TDIDT only):

(a) the attribute may be used once only in any given

rule, as for categorical attributes
(b) (the default setting) the attribute may be used, i.e.

subdivided into ranges, more than once in a rule if
necessary, e.g.
IF a = yes AND x < 6.4 AND b=3 AND x < 3.2
THEN Class = 2

Inducer automatically combines multiple ranges of a
continuous attribute; e.g. the above rule would be
treated as
IF a = yes AND x < 3.2 AND b = 3 THEN Class = 2

3.5 Rule Execution Parameters
A 'default to majority class' facility is provided to
force Inducer to classify all instances in the test set.

Instances that would otherwise be unclassified are
assigned to the most commonly occurring class. This
is likely to be of practical value in domains where it is
important to maximise the number of correct
classifications and there is little or no penalty for
incorrect ones. The default setting is false.

3.6 Display Parameters
Options are available (all defaulting to 'false') to
display:

(a) the frequency of occurrence of each value of each

categorical attribute, together with the minimum,
maximum and average values of each continuous
attribute

(b) the value of the RI measure for each rule
(c) details of clashes encountered during rule

generation.

There is also an option to suppress the display of rules
to the screen. This can speed up execution
considerably. The total number of rules and terms and
the average number of terms per rule are still
displayed.

3.7 Saved Rule Parameters
Two parameters are available in connection with the
saving of rules (the default for both is false):

(a) Save Rules - Save rules in a saved rule file in a

coded form, together with the values of the main
system parameter settings. Rule files are output to
the saved rules directory, which is set by the
Inducer initialisation file (see Section 3.10).

(b) Use Saved Rules - Read in rules from a saved rule
file for the specified dataset. No processing of the
training set takes place and the values of all rule
generation parameters are ignored.

3.8 Log File
Every time the go button is pressed details of the main
system parameter settings are recorded in a log file
inducer.log, together with the number of rules and
terms generated and the number of instances correctly
classified, incorrectly classified or unclassified in the
training set and (if applicable) the test set.

3.9 Other Output Files
The default for all four selections is false. All output
files are saved to the output files directory, which is
set by the Inducer initialisation file.

(a) A number of interestingness measures associated
with each rule, including RI, are output to a file.

(b) Statistics giving the number of correctly
classified, incorrectly classified and unclassified
instances and the confusion matrix are output for
the training set and (if selected) the test set for the
chosen dataset.

(c) Detailed information about any misclassified
instances can be output to an 'exceptions' file.

(d) Selecting the 'rule output to file' option enables
the user to output the rules for possible use by
another language or package. Three output
formats are available:
• a Java method
• a set of Prolog clauses
• (TDIDT only) a script file suitable for input

to the SPSS flowcharting package AllClear.

3.10 Initialisation File
The initialisation file inducer.ini is invoked
automatically when the application version of Inducer
starts executing. It is used to specify the location of
the input, output and rule file directories and the file
extensions for the name, training and test sets, plus the
saved rules file, the 'output rules' file and the rule
interestingness measures, exceptions and statistics
files.

For the applet version an equivalent effect to the
initialisation file is achieved by embedding the
information in the web page used to invoke the applet
using the <PARAM> tag.

3.11 Batch Mode
An option is available (default setting false) to run
Inducer in batch mode. When this is selected details
of the input file, output file and saved rule file
directories are taken from the file inducer.bat. These
are followed by an unlimited number of triples
specifying a name file, a training set and a test set.
Pressing the go button causes Inducer to run on each
of these triples of files in turn. All other parameter
settings are taken from the graphical interface.

Running Inducer in batch mode enables a substantial
series of experiments, say with a fixed name file and
training set and a range of different test sets, to be run
in a simple and rapid fashion, with the output
automatically recorded in the log file.

4 Experiments in Rule Induction

The availability of the Inducer package makes it
straightforward to conduct even very extensive
comparisons of different rule induction algorithms
and related strategies. A number of comparisons of
TDIDT and N-Prism are reported in [5].

As a further example, an experiment was conducted to
compare the sensitivity of the two algorithms to
missing values. The dataset used for this experiment
was the Vote dataset from the UCI Repository. The
dataset has 16 attributes (all categorical), 2 classes
(Democrat and Republican), with 300 instances in the
training set and 135 in the test set.

Using Datagen, another of the packages in the
Inducer suite, missing values were systematically
introduced into the training and test sets in a random
fashion with frequency from 10% up to 70%. Using
the batch mode facility of Inducer the classification
accuracy of the two algorithms was then computed for
missing value levels of 0%, 10%, 20%, 30%, 50% and
70% in each of the training and test sets, as a single
batch run.

Both algorithms used the same strategy for dealing
with missing values, with each missing value being
replaced by the most frequently occurring value when
generating or applying the classification rules.

Vote Dataset: Number of Terms
Generated

0
200
400
600
800

0 10 20 30 50 70
% Missing Values in Training

Set

N
o.

 O
f T

er
m

s

TDIDT Terms
Prism Terms

Figure 3. Number of Terms Generated for Varying
Levels of Missing Values in the 'Vote' Training Set

The two algorithms produced virtually identical
numbers of rules for each level of missing values in
the training set. With 70% missing values there is
some advantage to N-Prism (65 rules compared with
73). However, Figure 3 shows that N-Prism is
considerably better than TDIDT when measured by
the total number of terms generated and thus the
average number of terms per rule. With no missing

values N-Prism generates a total of only 89 terms
compared with 156 for TDIDT. Most strikingly, the
total number of terms generated by N-Prism is not
much more with 70% missing values (306 terms) than
with 20% (296). By contrast TDIDT generates 462
terms with 20% missing values and this rises to 596 as
the level of missing values increases to 70%.

Vote Dataset: 50% Missing Values in
Training Set

0

45

90

135

0 10 20 30 40 50 60 70 80

% Missing Values in Test Set

C
or

re
ct

C

la
ss

ifi
ca

tio
ns

TDIDT
Prism

Figure 4. Effects of Introducing Missing Values in the
‘Vote’ Training and Test Sets

Figure 4 shows the comparative levels of
classification accuracy of the two algorithms for
missing value levels of 20% and 50% in the training
set. Both algorithms perform well overall, even with
high levels of missing values in both sets.

One way to extend these experiments would be to
examine the effect of pre-pruning the rules, e.g. by
means of a depth cutoff during the rule generation
process, or of post-pruning them, say by discarding
any rules with too low a value of the RI rule
interestingness measure.

In general, a range of such experiments would need to
be carried out to determine the most appropriate rule
induction technique for a given application.

5 Conclusions

The Inducer rule induction workbench provides a
powerful framework for in-depth experiments with
alternative rule induction algorithms and related
strategies. One such experiment has been reported
briefly above. The package has been developed in a
modular fashion to facilitate the addition of further
algorithms and strategies as required.

References

1. Hunt, E.B., Marin J. and Stone, P.J. Experiments

in Induction. Academic Press, 1966
2. Michie, D. Machine Executable Skills from

"Silent" Brains. In: Research and Development in
Expert Systems VII. Cambridge University Press,
1990

3. Quinlan, J. R. C4.5: Programs for Machine
Learning. Morgan Kaufmann, 1993

4. Cendrowska, J. PRISM: an Algorithm for
Inducing Modular Rules. International Journal of
Man-Machine Studies, 1987; 27: 349-370

5. Bramer, M.A. Automatic Induction of
Classification Rules from Examples Using N-
Prism. In: Research and Development in
Intelligent Systems XVI. Springer-Verlag, pp. 99-
121, 2000

6. MLC++ Machine Learning Library in C++. [A
library of C++ classes, downloadable from
http://www.sgi.com/Technology/mlc]

7. Witten, I.H. and Frank, E. Data Mining: Practical
Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann, 2000

8. Bramer, M.A. The Inducer User Guide and
Reference Manual. Technical Report: University
of Portsmouth, Faculty of Technology, 1999

9. Blake, C.L. and Merz, C.J. UCI Repository of
Machine Learning Databases
[http://www.ics.uci.edu/~mlearn/MLRepository.h
tml]. Irvine, CA: University of California,
Department of Information and Computer
Science, 1998

10. Freitas, A.A. On Rule Interestingness Measures.
In: Research and Development in Expert Systems
XV. Springer-Verlag, 1999, pp.147-158

11. Piatetsky-Shapiro, G. Discovery, Analysis and
Presentation of Strong Rules. In: Piatetsky-
Shapiro, G. and Frawley, W.J. (eds.), Knowledge
Discovery in Databases. AAAI Press, 1991, pp.
229-248

Vote Dataset: 20% Missing Values in
Training Set

0

45

90

135

0 10 20 30 40 50 60 70 80

% Missing Values in Test Set

C
or

re
ct

C

la
ss

ifi
ca

tio
ns

TDIDT
Prism

