

An Information-Theoretic Approach to the Pre-
pruning of Classification Rules

Max Bramer
University of Portsmouth, Portsmouth, UK

Abstract: The automatic induction of classification rules from examples is an important
technique used in data mining. One of the problems encountered is the
overfitting of rules to training data. In some cases this can lead to an
excessively large number of rules, many of which have very little predictive
value for unseen data. This paper is concerned with the reduction of
overfitting. It introduces a technique known as J-pruning, based on the J-
measure, an information theoretic means of quantifying the information
content of a rule and applies this to two rule induction methods: one where the
rules are generated via the intermediate representation of a decision tree and
one where rules are generated directly from examples.

Keywords: Knowledge Discovery, Data Mining, Classification Rules, Decision Trees

1. INTRODUCTION

The growing commercial importance of knowledge discovery and data
mining techniques has stimulated new interest in the automatic induction of
classification rules from examples, a field in which research can be traced
back at least as far as the mid-1960s [1].

Most work in this field to date has concentrated on generating
classification rules in the intermediate form of a decision tree using variants
of the TDIDT (Top-Down Induction of Decision Trees) algorithm [2]. An
alternative approach, which generates classification rules directly from the
examples, is Prism [3,4].

1

A problem that arises with all methods of generating rules is that of
overfitting of the rules to the training data. In some cases this can result in
excessively large rule sets and/or rules with very low predictive power for
previously unseen data.

This paper describes a method for reducing overfitting in classification
rules known as J-Pruning. The method makes use of the value of the J-
measure, an information theoretic means of quantifying the information
content of a rule. The rules are pre-pruned, i.e. pruned as they are being
generated.

Results are presented for a range of datasets using both TDIDT and
Prism. The use of J-pruning leads in all cases to a reduction in the number of
rules generated and in many cases to an increase in predictive accuracy.

2. AUTOMATIC INDUCTION OF
CLASSIFICATION RULES FROM EXAMPLES

2.1 Basic Terminology

It is assumed that there is a universe of objects, each of which belongs to

one of a set of mutually exclusive classes. Objects are described by the
values of a number of their attributes. There is a two-dimensional table of
examples, known as a training set, each row of which (an instance)
comprises the values of the attributes and the corresponding classification
for a single object. The aim is to develop classification rules that enable the
class to which any object in an unseen test set of further instances belongs to
be determined from the values of its attributes. It will be assumed that the
rules are to be in propositional form, each comprising a conjunction of
terms, such as

 IF x=a AND y=b AND z>34.5 AND w=k THEN Class=3

A more detailed description is given in [5].

2.2 Top-Down Induction of Decision Trees

Many systems have been developed to derive classification rules of the
above kind from a training set. Most (but not all) do so via the intermediate
form of a decision tree constructed using a variant of the TDIDT (top-down
induction of decision trees) algorithm given in Figure 1 below.

The induced decision tree can be regarded as a set of classification rules,
one corresponding to each branch.

The most widely used criterion for selecting attributes at step (a) is
probably Information Gain. This uses the information-theoretic measure

 IF all cases in the training set belong to the same class
 THEN return the value of the class

 ELSE

 (a) Select an attribute A to split on *

 (b) Sort the instances in the training set into non-empty subsets, one for
 each value of attribute A
 (c) Return a tree with one branch for each subset, each branch having a
 descendant subtree or a class value produced by applying the
 algorithm recursively for each subset in turn.

 * When selecting attributes at step (a) the same attribute must not be
 selected more than once in any branch.

Figure 1. The TDIDT Tree Generation Algorithm

entropy to choose the attribute which maximises the expected gain of
information from applying the additional test. This is the approach adopted
in well-known systems such as C4.5 [2].

2.3 The Prism Algorithm

The Prism classification rule generation algorithm was developed by

Cendrowska [3], primarily as a means of avoiding the generation of
unnecessarily complex rules, which it was argued is an unavoidable but
undesirable consequence of the use of a tree representation. The need to fit
rules into such a representation requires them all to begin with a test on the
value of the same attribute, even though that attribute may be irrelevant to
many or most of the rules.

The Prism algorithm induces classification rules directly from a training
set one rule at a time. Each rule is generated term-by-term, by selecting the
attribute-value pair that maximises the probability of a chosen outcome
class.

Reference [4] introduced a revised form of the Prism algorithm,
incorporating a number of new features. The version of the algorithm used
for the experiments described in this paper (PrismTCS) will be described in
detail in Section 5.1.

2.4 Dealing With Clashes

Clashes occur during the classification tree/rule generation process
whenever an algorithm is presented with a subset of the training set which

contains instances with more than one classification, but which cannot be
processed further. Such a subset is known as a ‘clash set’.

The principal cause of clashes is the presence of inconsistent data in the
training set, where two or more instances have the same attribute values but
different classifications. In such cases, a situation will inevitably occur
during tree/rule generation where a subset with mixed classifications is
reached, with no further attributes available for selection.

If this occurs at step (a) of the TDIDT algorithm the simplest way of
dealing with the clash (and the method assumed in this paper) is to treat all
the instances in the clash set as if they belong to the class that contains the
largest number of them and generate a rule (i.e. a branch of the classification
tree) accordingly.

Clashes in Prism are resolved in the following way. First the largest class
for the subset of instances in the clash set is determined. If this largest class
is the one for which a rule is being generated, the induced rule is treated as
complete. If not, the rule is discarded and those instances in the clash set that
have that classification are removed from the training set.

2.5 Overfitting of Rules to Data

The principal problem with TDIDT, Prism and other algorithms for
generating classification rules is that of overfitting. Beyond a certain point,
specialising a rule by adding further terms can become counter-productive.
The generated rules give a perfect fit for the instances from which they were
generated but in some cases are too specific to have a high level of
predictive accuracy for other instances. Another consequence of excessive
specificity is that there is often an unnecessarily large number of rules. A
smaller number of more general rules may have greater predictive accuracy
on unseen data, at the expense of no longer correctly classifying some of the
instances in the original training set. Alternatively, a similar level of
accuracy may be achieved with a more compact set of rules.

2.6 Pruning Classification Rules to Reduce Overfitting

One approach to reducing overfitting, known as post-pruning, which is
often used in association with decision tree generation, is to generate the
whole set of classification rules and then remove a (possibly substantial)
number of rules and terms, by the use of statistical tests or otherwise. An
empirical comparison of a number of such methods is given in [6]. An
important practical objection to post-pruning methods is that there is a large
computational overhead involved in generating rules only then to delete a
high proportion of them, especially if the training sets are large.

Pre-pruning a set of classification rules (or a decision tree) involves
terminating some of the rules (branches) prematurely as they are being
generated. Each incomplete rule such as

IF x = 1 AND z = yes AND q > 63.5 …. THEN …

corresponds to a subset of instances currently 'under investigation'.
If not all the instances have the same classification the rule would

normally be extended by adding a further term, as described previously.
When following a pre-pruning strategy the subset is first tested to determine
whether or not a termination condition applies. If it does not, a further term
is generated as usual. If it does, the rule is pruned, i.e. it is treated as if no
further attributes were available and a clash had occurred (see Section 2.4).

Reference [7] reports on experiments with four possible termination
conditions for pre-pruning rules as they are generated by TDIDT, e.g.
truncate each rule as soon as it reaches 4 terms in length. The results
obtained clearly show that pre-pruning can substantially reduce the number
of terms generated and in some cases can also increase the predictive
accuracy. Although they also show that the choice of pre-pruning method is
important, it is not clear that (say) the same length limit should be applied to
each rule, far less which of the termination conditions is the best one to use
or why. There is a need to find a more principled choice of termination
condition to use with pre-pruning, if possible one which can be applied
completely automatically without the need for the user to select any
'threshold value' (such as the maximum number of terms for any rule). The
J-measure described in the next section provides the basis for a more
principled approach to pre-pruning.

3. THE J-MEASURE

3.1 Measuring the Information Content of a Rule

The J-measure was introduced into the rule induction literature by Smyth
and Goodman [8] as an information theoretic means of quantifying the
information content of a rule that is soundly based on theory.

Given a rule of the form If Y=y, then X=x, using the notation of [8], the
(average) information content of the rule, measured in bits of information, is
denoted by J(X;Y=y). The value of this quantity is given by the equation

);().();(yYXjypyYXJ ===

Thus the J-measure is the product of two terms:

• p(y) The probability that the hypothesis (antecedent of the rule) will
occur - a measure of hypothesis simplicity

• j(X;Y=y) The j-measure (note the small letter 'j') or cross-entropy - a
measure of the goodness-of-fit of a given rule.

The cross-entropy term is defined by the equation:

)
))(1(

))|(1((log)).|(1()
)(

)|((log).|();(22 xp
yxpyxp

xp
yxpyxpyYXj

−
−−+==

The maximum value of the J-measure can be shown to be

e
e2log ,

which is approximately 0.5307 bits.
Further information on the J-measure and its uses is given in [8].
In what follows, it will be taken as a working hypothesis that a rule with

a high J value (i.e. high information content) is also likely to have a high
level of predictive accuracy for previously unseen instances.

3.2 A J-measure Interpretation of Overfitting

The results given in [7] strongly suggest that, beyond a certain point,
adding further terms to rules can become counter-productive because of
overfitting. Analysing successive forms of a rule using the J-measure
clarifies why this happens.

Taking the lens24 dataset for illustration, one of the rules generated is

IF tears=2 AND astig=1 AND age=3 AND specRx=1 THEN class=3

This has a J-value of 0.028 and seems a reasonable rule. However, by

looking at the way the rule develops term-by-term a different picture
emerges.

Reference [8] gives a formula for Jmax, an upper bound on the J value of
any rule that can be obtained by specialising a given rule by adding further
terms. After just one term, the rule and corresponding J and Jmax values
were

IF tears=2 THEN class=3 (J=0.210, Jmax=0.531)

In general, specialising a rule by adding further terms may either increase

or decrease the value of J (i.e. the information content). However the value
of Jmax gives the maximum J value that any possible specialisation of the
rule may achieve. In this case Jmax = 0.531, so it seems appropriate to
continue developing the rule. Adding the second term gives

IF tears=2 AND astig=1 THEN class=3 (J= 0.161, Jmax=0.295)

The J value has gone down from 0.210 to 0.161, but has the potential to

increase again, possibly up to 0.295 by further specialisation. Adding the
third and fourth terms completes the picture.

IF tears=2 AND astig=1 AND age=3 THEN class=3

(J= 0.004, Jmax=0.059)
IF tears=2 AND astig=1 AND age=3 AND specRx=1 THEN class=3

(J= 0.028, Jmax=0.028)

The combined effect of adding the three final terms has been to lower the

J value (information content) of the rule by almost a factor of 10. If we
assume that the J measure is a reliable indicator of the information content
and thus the predictive accuracy of a rule, it would have been better to
truncate the left-hand side of the rule after a single term. This would have led
to more misclassified instances for the training data, but may have led to
better predictive accuracy on unseen data.

4. USING J-PRUNING WITH TDIDT

4.1 J-Pruning

There are several ways in which J values can be used to aid classification
tree generation. One method, which will be called J-pruning, is to prune a
branch as soon as a node is generated at which the J value is less than that at
its parent.

Looking at this in terms of partially completed rules, say there is an
incomplete rule for the lens24 dataset

(1) IF tears=2 AND astig=2 ….

Splitting on attribute specRx (which has two values) would add an

additional term, making the incomplete rule

(2) IF tears=2 AND astig=2 AND specRx=1 ….
or

(3) IF tears=2 AND astig=2 AND specRx=2 ….

All the instances corresponding to branch (2) have the same
classification, so the rule is completed with that classification in the usual
way. However the instances corresponding to branch (3) have more than one
classification.

The J-pruning technique now involves a comparison between the J-value
of (3) and the J-value of (1). If the former is smaller, the rule is truncated and
the instances are all classified as belonging to the class to which the largest
number of instances belong. If not, the TDIDT algorithm continues by
splitting on an attribute as usual.

The difficulty in implementing the above method is that the value of J
depends partly on the class specified in the rule consequent, but when the
partial rules (incomplete branches) are generated there is no way of knowing
which class that will eventually be. A branch may be extended by TDIDT to
have a large descendent subtree, obtained by subsequent splittings on
attributes, with many leaf nodes each of which has its own classification.

If the rules had been truncated at (1) there are 3 possible ways in which
all the instances could have been assigned to a single class. These are listed
below with the corresponding values of J and Jmax

IF tears=2 AND astig=2 THEN class=1 (J = 0.223, Jmax = 0.431)
IF tears=2 AND astig=2 THEN class=2 (J = 0.084, Jmax = 0.084)
IF tears=2 AND astig=2 THEN class=3 (J = 0.063, Jmax = 0.236)

There are 3 possible ways in which the instances corresponding to (3)

could be assigned to a single class:

IF tears=2 AND astig=2 AND specRx=2 THEN class=1
(J=0.015, Jmax=0.108)

IF tears=2 AND astig=2 AND specRx=2 THEN class=2
(J=0.042, Jmax=0.042)

IF tears=2 AND astig=2 AND specRx=2 THEN class=3
(J=0.001, Jmax=0.059)

If there are only two classes the value of J is the same whichever is taken.

When there are more than two classes an effective heuristic is to use the
largest of the possible J values in each case. Thus the J values for branches
(1) and (3) are taken to be 0.223 and 0.042 respectively.

Since the value for (3) is lower than for (1), J-pruning takes place and
branch (3) is truncated.

Table 1 shows the results obtained using J-pruning with a variety of
datasets and the comparative figures for unpruned rules. The results were
obtained using 10-fold cross-validation [7] in each case. The Information

Gain attribute selection criterion is used throughout. The number of
attributes and the percentage size of the largest class are also included for
information.

Table 1. Comparison of Unpruned and J-pruned Rules for TDIDT

Dataset Largest No. of Number Accuracy Number Accuracy
Class % Attributes of Rules (%) of Rules (%)

agaricus_lepiota 52 22 24.0 100.00 16.0 99.41
breast-cancer 66 9 93.2 89.84 66.5 91.27
chess 95 7 20.0 99.38 6.2 96.44
contact_lenses 88 5 16.0 92.55 8.3 92.64
genetics 52 60 357.4 89.22 25.9 78.15
lens24 63 4 8.4 70.00 6.2 70.00
monk1 50 6 37.8 83.91 14.4 67.76
monk2 62 6 88.4 43.82 21.3 55.66
monk3 51 6 26.5 86.92 12.5 90.90
soybean 13 35 106.9 88.74 29.6 76.87
vote 61 16 29.2 91.67 11.1 94.00
zoo 41 16 13.8 97.00 10.9 89.18
AVERAGE 68.5 86.09 19.1 83.52

No Pruning With J-pruning

The reduction in the number of rules is clearly considerable for many of

the datasets (e.g. 357.4 to 25.9 for genetics and from 106.9 to 29.6 for
soybean). On average the number of rules is reduced from 68.5 to only 19.1
for the 12 datasets. This again confirms that the basic (unpruned) form of
TDIDT leads to substantial overfitting of rules to the instances in the training
set. The predictive accuracy is higher with J-pruning for 5 of the datasets,
lower for 6 and unchanged for one (the smallest dataset, lens24). On average
the predictive accuracy is reduced by 2.5% but this may not be as important
in practice as the substantial reduction in the number of rules and
corresponding gain in simplicity of the classification rules generated.

The method of using the J-measure for pre-pruning adopted here has
limitations that relate directly to the use of the decision tree representation
imposed by TDIDT and are difficult to overcome in that framework.

The method prunes a branch as soon as a node is generated at which the J
value is less than that at its parent. It would have been better if that branch
had been pruned at the parent node instead, but doing so would also have
removed all other descendant branches, possibly with damaging results.

The use of a decision tree representation for rules has previously been
identified as itself a major cause of overfitting [3,4]. An example is given in

[3] of two rules with no attribute in common which are equivalent to a
complex decision tree almost all branches and terms of which are redundant.

It may prove more effective to incorporate J-pruning or other pre-pruning
techniques into an algorithm such as Prism, which generates classification
rules directly rather than through the intermediate representation of a
decision tree.

5. ADDING J-PRUNING TO PRISM

5.1 PrismTCS

The version of Prism described in this paper is a modified form known as
PrismTCS (standing for Prism with Target Class, Smallest first), which has
been found to produce smaller sets of classification rules than the original
form of the algorithm, with a similar level of predictive accuracy. In that
form the training set is restored to its original state before the rules are
generated for each class, thus requiring the full training set to be processed
once for each of the classes.

 (1) Find the class with fewest instances in the training set (ignoring any with
 none). Call this the target class TC.

(2) Calculate the probability that class = TC for each possible
attribute-value pair *

(3) Select the attribute-value pair with the maximum probability and create
a subset of the training set comprising all instances with the selected
combination (for all classes)

(4) Repeat 2 and 3 for this subset until it contains only instances of class
TC. The induced rule is then the conjunction of all the attribute-value pairs
selected in creating this subset

(5) Remove all instances covered by this rule from the training set

 Repeat 1-5 until there are no instances remaining in the training set

 * Any attribute that is part of an attribute-value pair already selected should
 not be used again for the same rule

Figure 2. The PrismTCS Rule Generation Algorithm

Instead PrismTCS makes use of a target class, which varies from one rule

to the next as shown in Figure 2.
With this form of the algorithm the full training set only needs to be

processed once however many classes there are.

5.2 Using the J-measure to Prune Prism Classification

Rules

At each stage of rule generation the J-value of the incomplete rule is
calculated and recorded. If at any stage adding an additional term would lead
to a decrease in the J-value, the term is discarded and the clash handling
method described in Section 2.4 is invoked. This method is known as J-
pruning.

The following table shows the number of rules generated and the
corresponding predictive accuracy of PrismTCS with and without J-pruning
for twelve datasets. The results were obtained using 10-fold cross-validation
in each case.

It can be seen that the number of rules generated for the unpruned
algorithm is on average significantly smaller for PrismTCS than for TDIDT.
Nevertheless the use of J-Pruning with PrismTCS reduces the number of
rules by more than one-third, with a substantial reduction from 87.7 rules to
only 25.1 for genetics and a halving of the number of rules from 37.3 to 16.9
for monk2, in both cases accompanied by an increase in predictive accuracy.
The predictive accuracy is larger for the J-pruned rule sets in seven cases and
smaller for only three. On average there is a small increase in predictive
accuracy despite the substantially reduced number of rules.

 Table 2. Comparison of Unpruned and J-pruned Rules for PrismTCS

Dataset Largest No. of Number Accuracy Number Accuracy
Class % Attributes of Rules (%) of Rules (%)

agaricus_lepiota 52 22 11.9 100.00 11.9 100.00
breast-cancer 66 9 37.8 93.99 33.2 95.28
chess 95 7 7.9 99.38 3.6 97.98
contact_lenses 88 5 8.6 88.73 6.6 89.82
genetics 52 60 87.7 90.88 25.1 93.48
lens24 63 4 6.5 55.00 6.4 58.33
monk1 50 6 14.0 87.56 10.8 88.46
monk2 62 6 37.3 50.18 16.9 59.71
monk3 51 6 15.2 85.32 13.6 83.65
soybean 13 35 64.9 90.63 51.5 92.98
vote 61 16 21.6 92.33 11.0 91.00
zoo 41 16 10.4 92.09 9.7 92.09
AVERAGE 27.0 85.51 16.69 86.90

No Pruning With J-Pruning

6. CONCLUSIONS

This paper has demonstrated the potential value of using the information-
theoretic J-measure as the basis for reducing overfitting by pre-pruning rules
as they are generated. The J-pruning technique illustrated works well in
practice for a range of datasets, both with the decision tree representation of
TDIDT and even more successfully with PrismTCS, an algorithm that
directly generates classification rules from examples. Unlike many other
possible measures, the J-measure has a sound theoretical foundation as a
measure of the information content of rules.

REFERENCES

[1] Hunt, E.B., Marin J. and Stone, P.J. (1966). Experiments in Induction. Academic Press
[2] Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann
[3] Cendrowska, J. (1987). PRISM: an Algorithm for Inducing Modular Rules.

International Journal of Man-Machine Studies, 27, pp. 349-370
[4] Bramer, M.A. (2000). Automatic Induction of Classification Rules from Examples

Using N-Prism. In: Research and Development in Intelligent Systems XVI. Springer-
Verlag, pp. 99-121

[5] Bramer, M.A. (1997). Rule Induction in Data Mining: Concepts and Pitfalls. Data
Warehouse Report, No. 10, pp. 11-17 and No. 11, pp. 22-27

[6] Mingers, J. (1989). An Empirical Comparison of Pruning Methods for Decision Tree
Induction. Machine Learning, 4, pp. 227-243

[7] Bramer, M.A. (2002). Using J-Pruning to Reduce Overfitting in Classification Trees.
In: Research and Development in Intelligent Systems XVIII. Springer-Verlag, pp. 25-
38.

[8] Smyth, P. and Goodman, R.M. (1991). Rule Induction Using Information Theory. In:
Piatetsky-Shapiro, G. and Frawley, W.J. (eds.), Knowledge Discovery in Databases.
AAAI Press, pp. 159-176

	INTRODUCTION
	AUTOMATIC INDUCTION OF CLASSIFICATION RULES FROM EXAMPLES
	THE J-MEASURE
	USING J-PRUNING WITH TDIDT
	ADDING J-PRUNING TO PRISM
	CONCLUSIONS
	REFERENCES

