
Using J-Pruning to Reduce Overfitting in 
Classification Trees 

Max Bramer  
Faculty of Technology, University of Portsmouth, Portsmouth, UK 

max.bramer@port.ac.uk 
www.dis.port.ac.uk/~bramerma 

Abstract The automatic induction of classification rules from 
examples in the form of a decision tree is an important technique 
used in data mining. One of the problems encountered is the 
overfitting of rules to training data. In some cases this can lead to an 
excessively large number of rules, many of which have very little 
predictive value for unseen data. This paper is concerned with the 
reduction of overfitting during decision tree generation. It introduces 
a technique known as J-pruning, based on the J-measure, an 
information theoretic means of quantifying the information content 
of a rule. 

1. Introduction 
 
The growing commercial importance of knowledge discovery and data mining 
techniques has stimulated new interest in the automatic induction of classification 
rules from examples, a field in which research can be traced back at least as far as 
the mid-1960s [1]. 
 
Most work in this field has concentrated on generating classification rules in the 
intermediate form of a decision tree using variants of the TDIDT (Top-Down 
Induction of Decision Trees) algorithm [2], [3]. The TDIDT algorithm will be 
described briefly in Section 2. It is well known, widely cited in the research 
literature and an important component of commercial packages such as 
Clementine. However, like many other methods, it suffers from the problem of 
overfitting of the rules to the training data, resulting in some cases in excessively 
large rule sets and/or rules with very low predictive power for previously unseen 
data. 
 
This paper is concerned with the reduction of overfitting in classification trees. 
Following a discussion of a number of alternative approaches in Section 3, a new 
technique known as J-Pruning is introduced in Section 4. The method is a 
refinement of the TDIDT algorithm, which enables a classification tree to be 
pruned while it is being generated, by making use of the value of the J-measure, an 
information theoretic means of quantifying the information content of a rule. 
Results are presented for a variety of datasets. 
 



All but two of the datasets used (wake_vortex and wake_vortex2) were either 
created by the author or downloaded from the on-line repository of machine 
learning datasets maintained at the University of California at Irvine [4]. 
 
 
2. Automatic Induction of Classification Rules 
 
2.1 Example and Basic Terminology 
 
The following example is taken from [2]. Table 1 records a golf player's decisions 
on whether or not to play each day based on that day's weather conditions. 
 
Outlook 

 
Temp 
(°F) 

Humidity 
(%) 

Windy Class 

sunny 
sunny 
sunny 
sunny 
sunny 

overcast 
overcast 
overcast 
overcast 

rain 
rain 
rain 
rain 
rain 

75 
80 
85 
72 
69 
72 
83 
64 
81 
71 
65 
75 
68 
70 

70 
90 
85 
95 
70 
90 
78 
65 
75 
80 
70 
80 
80 
96 

true 
true 
false 
false 
false 
true 
false 
true 
false 
true 
true 
false 
false 
false 

play 
don't play 
don't play 
don't play 

play 
play 
play 
play 
play 

don't play 
don't play 

play 
play 
play 

 
Table 1. The golf Training Set. What combination of weather conditions 

determines whether the decision is to play or not to play? 
 
The standard terminology is to call Table 1 a training set and each of its rows an 
instance. Each instance comprises the values of a number of attributes (variables) 
and the value of a corresponding classification. Attributes can be either categorical 
(such as outlook) or continuous such as humidity. 
 
One possible set of classification rules that can be derived from Table 1 is as 
follows: 
 
1. IF outlook = sunny AND humidity <= 75 THEN Class = play 
2. IF outlook = sunny AND humidity > 75 THEN Class = don't play 
3. IF outlook = overcast THEN Class = play 
4. IF outlook = rain AND windy = true THEN Class = don't play 
5. IF outlook = rain AND windy = false THEN Class = play 
 



2.2 Inducing Decision Trees: The TDIDT Algorithm 
 
The TDIDT algorithm constructs a set of classification rules via the intermediate 
representation of a decision tree. At each leaf node of the tree all the corresponding 
instances have the same classification. 
 
A possible decision tree, corresponding to the classification rules given in Section 
2.1, is shown in Figure 1. 
 

To Play or Not to Play?

<= 75 > 75 true false

sunny overcast rain

play don't play

humidity play

don't play play

windy

outlook

 
 
Figure 1. Decision Tree Corresponding to Table 1 
 
The most commonly used criterion for selecting attributes to split on is probably 
Information Gain [3], which uses the information theoretic measure entropy at 
each stage to split on the attribute which maximises the expected gain of 
information from applying the additional test. Further details about automatic 
induction of classification trees are given in [5].  

2.3 Using Classification Trees for Prediction 
 
Using Information Gain to select the attribute to split on at each stage of the tree 
generation process generally produces very compact decision trees, which is highly 
desirable if the training set contains all possible instances in a given domain. 
However, in practice the training set generally contains only a sample (often a very 
small sample) of all possible instances in a domain, and there is no guarantee that 
using Information Gain (or any other attribute selection criterion) will produce 
classification trees that correctly predict all previously unseen instances. 
 
A method of estimating the classification accuracy of rules, which will be used 
throughout this paper, is ten-fold cross-validation. First, the original dataset is 
divided into 10 approximately equal parts. Ten runs of the TDIDT algorithm are 
then performed, with each of the ten parts used as a test set in turn, and the other 
nine used as the training set each time. The results of these 10 runs are then 
combined to give an average number of rules and an average percentage level of 
predictive accuracy. 
 



Dataset 
 

Instances Rules Classification 
Accuracy 

diabetes 768 121.9 70.3 
genetics 3190 357.4 89.2 

hypo 2514 14.2 99.5 
lens24 24 8.4 70.0 

wake_vortex* 1714 298.4 71.8 
 
Table 2. TDIDT with Information Gain. 10-fold Cross Validation 
* The wake_vortex and wake_vortex2 datasets were obtained from National Air Traffic 
Services Ltd. (NATS) for use in connection with a practical classification task. The former 
dataset is a restricted version with only four attributes. The latter is the full version with 51 
attributes, 32 of them continuous. 
 
The results in Table 2 and elsewhere have been generated using Inducer, one of a 
suite of packages developed by the author to facilitate experiments with different 
techniques for generating classification rules. Inducer is implemented in Java in 
the interests of portability and is available both as a standalone application and as 
an applet. Further information is given in [6] and [7]. All the experiments use the 
TDIDT algorithm with the Information Gain attribute selection criterion and give 
the average results from 10-fold cross-validation. 
 
The results in Table 2 show that for some datasets (such as hypo) TDIDT with 
Information Gain can produce compact rulesets with high predictive accuracy. For 
other datasets the method can produce a large ruleset (genetics) or one with 
relatively low predictive accuracy (lens24) or both (diabetes and wake_vortex). 
 
Despite its limitations, the method is widely used in practice as a benchmark 
against which other algorithms are evaluated and has proved its worth as a robust 
method on which it is difficult to improve across a wide range of datasets. 

2.4 Overfitting of Rules to Data 
 
The principal problem with TDIDT and other algorithms for generating 
classification rules is that of overfitting. Beyond a certain point, specialising a rule 
by adding further terms can become counter-productive. The generated rules give a 
perfect fit for the instances from which they were generated but in some cases are 
too specific to have a high level of predictive accuracy for other instances. Another 
consequence of excessive specificity is that there are often an unnecessarily large 
number of rules. A smaller number of more general rules may have greater 
predictive accuracy on unseen data, at the expense of no longer correctly 
classifying some of the instances in the original training set. Even if the level of 
accuracy is not improved, deriving a smaller number of rules has obvious potential 
benefits. 



3. Using Pruning to Improve Decision Trees 

3.1 Post-pruning of Decision Trees 
 
One approach to reducing overfitting, known as post-pruning, is to generate the set 
of classification rules using TDIDT as before and then remove a (possibly 
substantial) number of branches and terms, by the use of statistical tests or 
otherwise. Quinlan [2] describes a pruning technique based on predicted error 
rates, which is used in his well-known system C4.5. A variety of other methods 
have also been tried, with varying degrees of success. An empirical comparison of 
a number of methods is given in [8]. 
 
An important practical objection to post-pruning methods of this kind is that there 
is a large computational overhead involved in generating rules only then to delete a 
high proportion of them. This may not matter with small experimental datasets, but 
‘real-world’ datasets may contain millions of instances and issues of computational 
feasibility and scaling up of methods will inevitably become important. 
 
Holte [9] reports an empirical investigation of the accuracy of rules that classify on 
the basis of just a single attribute. These very simple rules perform surprisingly 
well compared with those produced by much more sophisticated methods. This too 
strongly suggests that a great deal of the effort involved in generating decision 
trees is either unnecessary or counterproductive and points to the potential value of 
a pre-pruning approach, as described in the next section, to avoid generating trees 
with an excessively large number of branches. 

3.2 Pre-pruning of Decision Trees 
 
Pre-pruning a decision tree involves terminating some of the branches prematurely 
as it is generated.  
 
Each branch of the evolving tree corresponds to an incomplete rule such as  
 

IF x = 1 AND z = yes AND q > 63.5 …. THEN … 
 
and also to a subset of instances currently 'under investigation'. 
 
If all the instances have the same classification, say c1, the end node of the branch 
is treated by the TDIDT algorithm as a leaf node labelled by c1. Each such 
completed branch corresponds to a (completed) rule, such as 
 

IF x = 1 AND z = yes AND q > 63.5 THEN class = c1 
 
If not all the instances have the same classification the node would normally be 
expanded to a subtree by splitting on an attribute, as described previously. When 
following a pre-pruning strategy the node (i.e. the subset) is first tested to 



determine whether or not a termination condition applies. If it does not, the node is 
expanded as usual. If it does, the branch is pruned, i.e. the node is treated as a leaf 
node labelled with (usually) the most frequently occurring classification for the 
instances in the subset (the 'majority class'). 
 
The set of pre-pruned rules will classify all the instances in the training set, albeit 
wrongly in some cases. If the proportion of such misclassifications is relatively 
small, the classification accuracy for the test set may be greater than for the 
unpruned set of rules. 
 
There are several criteria that can be applied to a node to determine whether or not 
pre-pruning should take place. Two of these are  
 
• Size Cutoff. Prune if the subset contains fewer than say 5 or 10 instances 
 
• Maximum Depth Cutoff. Prune if the length of the branch is say 3 or 4 
 
Table 3 shows the results obtained from 10-fold cross-validation with a size cutoff 
of 5 instances, 10 instances or no cutoff (i.e. unpruned). Table 4 shows the results 
with a maximum depth cutoff of 3, 4 or unlimited. 
 

No Cutoff 5 Instances 10 Instances Dataset 
 Rules % Acc. Rules % Acc. Rules % Acc. 
breast-cancer 93.2 89.8 78.7 90.6 63.4 91.6 
contact_lense
s 

16.0 92.5 10.6 92.5 8.0 90.7 

diabetes 121.9 70.3 97.3 69.4 75.4 70.3 
glass 38.3 69.6 30.7 71.0 23.8 71.0 
hypo 14.2 99.5 11.6 99.4 11.5 99.4 
monk1 37.8 83.9 26.0 75.8 16.8 72.6 
monk3 26.5 86.9 19.5 89.3 16.2 90.1 
sick-euthyroid 72.8 96.7 59.8 96.7 48.4 96.8 
vote 29.2 91.7 19.4 91.0 14.9 92.3 
wake_vortex 298.4 71.8 244.6 73.3 190.2 74.3 
wake_vortex2 227.1 71.3 191.2 71.4 155.7 72.2 
 
Table 3. Pre-pruning With Varying Size Cutoffs 
 
 

No Cutoff Length 3 Length 4 Dataset 
 Rules % Acc. Rules % Acc. Rules % Acc. 
breast-cancer 93.2 89.8 92.6 89.7 93.2 89.8 
contact_lense
s 

16.0 92.5 8.1 90.7 12.7 94.4 

diabetes 121.9 70.3 12.2 74.6 30.3 74.3 
glass 38.3 69.6 8.8 66.8 17.7 68.7 



hypo 14.2 99.5 6.7 99.2 9.3 99.2 
monk1 37.8 83.9 22.1 77.4 31.0 82.2 
monk3 26.5 86.9 19.1 87.7 25.6 86.9 
sick-euthyroid 72.8 96.7 8.3 97.8 21.7 97.7 
vote 29.2 91.7 15.0 91.0 19.1 90.3 
wake_vortex 298.4 71.8 74.8 76.8 206.1 74.5 
wake_vortex2 227.1 71.3 37.6 76.3 76.2 73.8 
 
Table 4. Pre-pruning With Varying Maximum Depth Cutoffs 
 
The results obtained clearly show that the choice of pre-pruning method is 
important. However, it is essentially ad hoc. No choice of size or depth cutoff 
consistently produces good results across all the datasets. 
 
This result reinforces the comment by Quinlan [2] that the problem with pre-
pruning is that the 'stopping threshold' is "not easy to get right - too high a 
threshold can terminate division before the benefits of subsequent splits become 
evident, while too low a value results in little simplification". There is therefore a 
need to find a more principled choice of cutoff criterion to use with pre-pruning 
than the size and maximum depth approaches used previously, and if possible one 
which can be applied completely automatically without the need for the user to 
select any cutoff threshold value. The J-measure described in the next section 
provides the basis for a more principled approach to pre-pruning of this kind. 
 
 
4. Using the J-measure in Classification Tree 

Generation 

4.1 Measuring the Information Content of a Rule 

The J-measure was introduced into the rule induction literature by Smyth and 
Goodman [10], who give a strong justification of its use as an information 
theoretic means of quantifying the information content of a rule that is soundly 
based on theory. 
 
Given a rule of the form If Y=y, then X=x, using the notation of [10], the 
(average) information content of the rule, measured in bits of information, is 
denoted by J(X;Y=y). The value of this quantity is given by the equation  
 

);().();( yYXjypyYXJ ===  
 
Thus the J-measure is the product of two terms: 
 
• p(y) The probability that the hypothesis (antecedent of the rule) will occur - a 

measure of hypothesis simplicity 



• j(X;Y=y) The j-measure (note the small letter 'j') or cross-entropy - a measure 
of the goodness-of-fit of a given rule. 

 
The cross-entropy term is defined by the equation:  

)
))(1(

))|(1((log)).|(1()
)(

)|((log).|();( 22 xp
yxpyxp

xp
yxpyxpyYXj

−
−−+==  

 
Smyth and Goodman state that the j-measure is the only non-negative measure of 
information satisfying the requirement that "the average information from all rules 
should be consistent with [Shannon's] standard definition for average mutual 
information between two [events]". 
 
A plot of the j-measure for various values of p(x), the a priori probability of the 
rule consequent, is given in Figure 2. 
 

Figure 2. Plot of j-Measure for Various Values of p(x)  
 
The J-measure has two helpful properties concerning upper bounds. First, it can be 

shown that the value of J(X;Y=y) is less than or equal to )
)(

1(log).( 2 yp
yp . 

The maximum value of this expression, given when p(y) = 1/e, is 
e

e2log , which is 

approximately 0.5307 bits. 
 
Second (and more important), it can be proved that the J value of any rule obtained 
by specialising the given rule by adding further terms is bounded by the value  



)}
)(1

1(log)).|(1(),
)(

1(log).|(max{).(max 22 xp
yxp

xp
yxpypJ

−
−=  

 
Thus if a given rule is known to have a J value of, say, 0.352 bits and the value of 
Jmax is also 0.352, there is no benefit to be gained (and possibly harm to be done) 
by adding further terms to the left-hand side, as far as information content is 
concerned. 
 
Further information on the J-measure and its uses is given in [11] and [12]. 

4.2 Using the J-measure for Rule Generation 
 
In what follows, it will be taken as a working hypothesis that rules with high 
information content are also likely to have a high level of predictive accuracy for 
previously unseen instances. 
 
In their system ITRULE [10] Smyth and Goodman make use of the availability of 
an upper bound Jmax on the J values of any possible further specialisations of a 
rule to generate the best N association rules from a given dataset, i.e. those with the 
highest J values. However, classification problems are normally concerned with 
finding all the rules necessary to make good classifications rather than, say, the 
best 50 rules. 
 
The values of J for a set of rules generated from a given training set do not have 
any consistent range of values (apart from being between 0 and 0.5307). As an 
example, applying TDIDT with Information Gain to the diabetes and lens24 
datasets gives rulesets of 140 and 9 rules, respectively. (Note that these are 
obtained using the entire dataset as a single training set in each case, not from 
cross-validation.) The J values for the rules in the diabetes ruleset vary from 
0.0008 to 0.1056, whereas those for the lens24 dataset vary from 0.0283 to 0.3390. 
It is difficult to give any physical interpretation to these values. It would be 
possible to post-prune a set of rules by discarding all rules except those with the 
highest N values of the J-measure or all those with J values below a certain 
threshold, but in general this could lead to a large number of instances in the 
training set left unclassified by the remaining rules and a corresponding loss of 
predictive accuracy for previously unseen instances. The analysis given in the next 
section points towards an alternative approach, using pre-pruning. 

4.3 A J-measure Interpretation of Overfitting 
 
The results given in Section 3.2 strongly suggest that, beyond a certain point, 
adding further terms to rules (by splitting on additional attributes) can become 
counter-productive because of overfitting. Analysing successive forms of a rule 
using the J-measure clarifies why this happens. 
 
Taking the lens24 dataset for illustration, one of the rules generated is  



IF tears=2 AND astig=1 AND age=3 AND specRx=1 THEN class=3  
 
This has a J-value of 0.028 and seems a reasonable rule. However, by looking at 
the way the rule develops term by term a different picture emerges. 
 
After just one term, the rule and corresponding J and Jmax values were  

IF tears=2 THEN class=3   (J=0.210, Jmax=0.531) 
 
In general, specialising a rule by adding further terms may either increase or 
decrease the value of J (i.e. the information content). However the value of Jmax 
gives the maximum J value that any possible specialisation of the rule may 
achieve. In this case Jmax = 0.531, so it seems appropriate to continue developing 
the rule. 
 
Adding the second term gives 

IF tears=2 AND astig=1 THEN class=3   (J= 0.161, Jmax=0.295) 
 
The J value has gone down from 0.210 to 0.161, but has the potential to increase 
again, possibly up to 0.295 by further specialisation. 
 
Adding the third and fourth terms completes the picture. 
 

IF tears=2 AND astig=1 AND age=3 THEN class=3    (J= 0.004, Jmax=0.059) 
 

IF tears=2 AND astig=1 AND age=3 AND specRx=1 THEN class=3      
(J= 0.028, Jmax=0.028) 

 
It can be seen that adding additional terms to rules can either increase or decrease 
the value of J. However, the combined effect of adding the three final terms has 
been to lower the J value (information content) of the rule by almost a factor of 10. 
If we assume that the J measure is a reliable indicator of the information content 
and thus the predictive accuracy of a rule, it would have been better to truncate the 
rule after a single term (classifying all the instances in the majority class). This 
would have led to more misclassified instances for the training data, but might 
have led to better predictive accuracy on unseen data. 

4.4 J-Pruning 
 
There are several ways in which J values can be used to aid classification tree 
generation. One method, which will be called J-pruning, is to prune a branch as 
soon as a node is generated at which the J value is less than that at its parent. 
 
Looking at this in terms of partially completed rules, say there is an incomplete 
rule for the lens24 dataset 
 
(1) IF tears=2 AND astig=2 …. 
 



Splitting on attribute specRx (which has two values) would add an additional term, 
making the incomplete rule 
 
(2) IF tears=2 AND astig=2 AND specRx=1 …. 

or 
(3) IF tears=2 AND astig=2 AND specRx=2 …. 
 
All the instances corresponding to branch (2) have the same classification, so the 
rule is completed with that classification in the usual way. However the instances 
corresponding to branch (3) have more than one classification. 
 
The J-pruning technique now involves a comparison between the J-value of (3) 
and the J-value of (1). If the former is smaller, the rule is truncated and the 
instances are all classified as belonging to the majority class, i.e. the class to which 
the largest number of instances belong. If not, the TDIDT algorithm continues by 
splitting on an attribute as usual. 
 
The difficulty in implementing the above method is that the value of J depends 
partly on the class specified in the rule consequent, but when the partial rules 
(incomplete branches) are generated there is no way of knowing which class that 
will eventually be. A branch may of course be extended by TDIDT to have a large 
descendent subtree, obtained by subsequent splittings on attributes, with many leaf 
nodes each of which has its own classification. 
 
If the rules had been truncated at (1) there are 3 possible ways in which all the 
instances could have been assigned to a single class. These are listed below with 
the corresponding values of J and Jmax 
 

IF tears=2 AND astig=2 THEN class=1   (J = 0.223, Jmax = 0.431) 
IF tears=2 AND astig=2 THEN class=2   (J = 0.084, Jmax = 0.084) 
IF tears=2 AND astig=2 THEN class=3   (J = 0.063, Jmax = 0.236) 

 
There are 3 possible ways in which the instances corresponding to (3) could be 
assigned to a single class: 
 

IF tears=2 AND astig=2 AND specRx=2 THEN class=1  (J=0.015, Jmax=0.108) 
IF tears=2 AND astig=2 AND specRx=2 THEN class=2  (J=0.042, Jmax=0.042) 
IF tears=2 AND astig=2 AND specRx=2 THEN class=3  (J=0.001, Jmax=0.059) 

 
If there are only two classes the value of J is the same whichever is taken. When 
there are more than two classes the J values will generally not all be the same. One 
possibility would be always to use the J value of the majority class, but in practice 
it has been found to be more effective to use the largest of the possible J values in 
each case. Thus the J values for branches (1) and (3) are taken to be 0.223 and 
0.042 respectively. Since the value for (3) is lower than for (1), J-pruning takes 
place and branch (3) is truncated. 
 



Table 5 shows the results obtained using J-pruning with a variety of datasets and 
the comparative figures for unpruned rules. 
 

No J-Pruning With J-Pruning Dataset 
 Rules % 

Accuracy 
Rules % 

Accuracy 
breast-cancer 93.2 89.8 66.5 91.3 
contact_lense

s 
16.0 92.5 8.3 92.6 

crx 127.5 79.4 20.4 85.4 
diabetes 121.9 70.3 6.4 75.1 
genetics 357.4 89.2 25.9 78.2 

glass 38.3 69.6 9.4 63.5 
hepatitis 18.8 82.0 4.5 81.2 

hypo 14.2 99.5 7.6 99.3 
iris 8.5 95.3 5.7 94.7 

lens24 8.4 70.0 6.2 70.0 
monk1 37.8 83.9 14.4 67.8 
monk2 88.4 43.8 21.3 55.7 
monk3 26.5 86.9 12.5 90.9 

sick-euthyroid 72.8 96.7 6.8 97.8 
vote 29.2 91.7 11.1 94.0 

wake_vortex 298.4 71.8 12.0 73.5 
wake_vortex2 227.1 71.3 12.4 72.5 
 
Table 5. Comparison of Unpruned and J-pruned Rules 
 
The reduction in the number of rules is clearly considerable for many of the 
datasets (e.g. from 121.9 to 6.4 for diabetes and from 298.4 to 12.0 for 
wake_vortex). This again confirms that the basic (unpruned) form of TDIDT leads 
to substantial overfitting of rules to the instances in the training set. The predictive 
accuracy is higher with J-pruning for 10 of the datasets, lower for 6 and unchanged 
for one (the smallest dataset, lens24). There are large increases in accuracy for crx 
and monk2 and large decreases in accuracy for genetics and monk1. 
 
The predictive accuracy obtainable from a dataset depends on many factors, 
including the appropriateness of the choice of attributes, so large improvements 
should not necessarily be expected from J-pruning (or any other form of pruning). 
However there are obvious benefits from a large reduction in the number of rules 
even when there is no gain in accuracy. 
 
4.5 Limitations of the Decision Tree Representation 
 
The method of using the J-measure for pre-pruning adopted here has limitations 
that relate directly to the use of the decision tree representation imposed by 
TDIDT. 



 
Suppose that the branch shown as a solid line in Figure 3 has been developed by 
TDIDT as far as node N0. (Other irrelevant branches are shown as dotted lines.) 
The decision needed is whether or not to develop the branch further by splitting on 
an additional attribute, giving nodes N1, N2 and N3. 

 
Figure 3. A Partially Generated Decision Tree 
 
Suppose that the J values of nodes N0, N1 and N2 are 0.25, 0.4 and 0.005 
respectively, so that the left-hand branch is developed by further splitting and the 
middle branch is J-pruned. Suppose also that all the instances corresponding to 
node N3 have the same classification, so that TDIDT treats it as a leaf node in the 
usual way. As far as the middle branch, which is J-pruned, is concerned it would 
have been better if the branch had been terminated a level earlier, i.e. at N0 (with a 
higher value of J). However doing so would also have eliminated the left-hand and 
right-hand branches, which would clearly have been disadvantageous. 
 
One possibility in this case would be to try combining the middle branch with 
either the left-hand or the right-hand branch. However there are many other 
possible situations that can arise and it is difficult to deal with all of them 
satisfactorily within the decision tree framework. 
 
The use of a decision tree representation for rules has previously been identified as 
a major cause of overfitting ([7], [13]). An example is given in [13] of two rules 
with no attribute in common which lead to a complex decision tree almost all 
branches and terms of which are redundant. Further reductions in overfitting are 
likely to come from incorporating J-pruning or other pre-pruning techniques into 
algorithms such as Prism [13] that generate classification rules directly rather than 
through the intermediate representation of decision trees. 
 
 
5. Conclusions 
 

N1 N2 N3

N0 



This paper has demonstrated the potential value of using the information-theoretic 
J-measure as the basis for reducing overfitting by pre-pruning branches during 
classification tree generation. The J-pruning technique illustrated works well in 
practice for a range of datasets. Unlike many other possible measures, the J-
measure has a sound theoretical foundation as a measure of the information 
content of rules. 
 
The decision tree representation of TDIDT is widely used and it is therefore 
desirable to find methods of pre-pruning that work well with this representation. 
However, the decision tree representation is itself a source of overfitting. For 
substantial further improvements techniques that work with algorithms that 
directly generate classification rules not classification trees will probably be 
necessary and the J-pruning method would appear to be well suited to this. 
 
 
References 
 
[1] Hunt, E.B., Marin J. and Stone, P.J. (1966). Experiments in Induction. 

Academic Press 
[2]  Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan 

Kaufmann 
[3] Quinlan, R. (1986). Induction of Decision Trees. Machine Learning, 1, pp. 

81-106 
[4]  Blake, C.L. and Merz, C.J. (1998). UCI Repository of Machine Learning 

Databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, 
CA: University of California, Department of Information and Computer 
Science 

[5] Bramer, M.A. (1997). Rule Induction in Data Mining: Concepts and Pitfalls 
Data Warehouse Report, No. 10, pp. 11-17 and No. 11, pp. 22-27 

[6]  Bramer, M.A. (2000). Inducer: a Rule Induction Workbench for Data 
Mining. In Proceedings of the 16th IFIP World Computer Congress 
Conference on Intelligent Information Processing (eds. Z.Shi, B.Faltings and 
M.Musen) Publishing House of Electronics Industry (Beijing), pp. 499-506 

[7] Bramer, M.A. (2000). Automatic Induction of Classification Rules from 
Examples Using N-Prism. In: Research and Development in Intelligent 
Systems XVI. Springer-Verlag, pp. 99-121 

[8]  Mingers, J. (1989). An Empirical Comparison of Pruning Methods for 
Decision Tree Induction. Machine Learning, 4, pp. 227-243 

[9]  Holte, R.C. (1993). Very Simple Classification Rules Perform Well on Most 
Commonly Used Datasets. Machine Learning, 11, pp. 63-90 

[10]  Smyth, P. and Goodman, R.M. (1991). Rule Induction Using Information 
Theory. In: Piatetsky-Shapiro, G. and Frawley, W.J. (eds.), Knowledge 
Discovery in Databases. AAAI Press, pp. 159-176 

[11]  Nazar, K. and Bramer, M.A. (1997). Concept Dispersion, Feature 
Interaction and Their Effect on Particular Sources of Bias in Machine 
Learning. In Hunt, J. and Miles, R. (eds.), Research and Development in 
Expert Systems XIV, SGES Publications. 



[12]  Nazar, K. and Bramer, M.A. (1999). Estimating Concept Difficulty With 
Cross-Entropy. In Bramer, M.A. (ed.), Knowledge Discovery and Data 
Mining, Institution of Electrical Engineers, London. 

[13]  Cendrowska, J. (1987). PRISM: an Algorithm for Inducing Modular Rules. 
International Journal of Man-Machine Studies, 27, pp. 349-370 


