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Abstract. A brief overview of the history of the development of decision
tree induction algorithms is followed by a review of techniques for dealing
with missing attribute values in the operation of these methods. The
technique of dynamic path generation is described in the context of tree-
based classification methods. The waste of data which can result from
casewise deletion of missing values in statistical algorithms is discussed
and alternatives proposed.
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1 Introduction

In the information age, data is generated almost everywhere: satellites orbiting
the moons of Jupiter; submarines in the deepest ocean trench; even electronic
point of sale machines in the high street produce data. All of these systems
generate millions of megabytes of data every day. Some of these data contain
information that could lead to important discoveries in science; some data con-
tain the knowledge that could predict a company’s growth or collapse and other
data contain knowledge that could mean the difference between life and death.

In order to analyse these important data and uncover hidden relationships
and knowledge within the data, some sort of data mining approach is required. In
the past, statistical methods such as logistic regression or discriminant analysis
were the only tools available for such a task. Unfortunately, they are some-
what cumbersome in the sense that the form of the model needs to be specified
beforehand, which is often not really feasible for an exploratory analysis involv-
ing a large number of variables. More recently, the massive increase of interest
and research in this area has made a number of innovative techniques avail-
able, which have their origins in computer science, rather than mathematical
statistics. These techniques include tree-based methods, neural networks, ge-
netic algorithms, case-based reasoning and so on. They offer the possibility of
automating the process of knowledge discovery to a greater degree than appears
possible with traditional statistical approaches. Because of their greater sim-
plicity and transparency, tree-based classification techniques are of particular
interest in this context.



Unlike some of the other newer techniques, tree-based classification methods
have two points of academic origin. The first of these was the study of inductive
learning. The influence of computer science in this field did not develop until the
second half of this century.? Hunt was one of the carly pioneers who modelled a
theory of human concept learning using computer programs. He developed a se-
ries of algorithms called ‘concept learning systems’ (CLS-1 to CLS-9), described
in Hunt (1962) and Hunt et al. (1966). Quinlan’s well-known TD3 algorithm
(Quinlan, 1979), was descended from these systems. Basically, TD3 was a pro-
cedure for discriminating between two classes in domains which were entirely
free from uncertainty. (In fact, ID3 was developed initially for performing chess
endgame analysis, discriminating between winning and non-winning positions).

The second point of origin lay in the discipline of mathematical statistics. It
is interesting to note that, among mathematical statisticians, there has been a
minority interest in these techniques for the last thirty years. However, this in-
terest did not really come to the fore until the last twelve years or so, prompted
by the work of Breiman et al. (1984) and the associated CART software for
performing classification and regression using binary trees. In the last few years,
tree-based classification and regression procedures have been incorporated into
multi-purpose statistical software packages. For example, the statistical package
‘S’, recently developed for use by statisticians themselves and described by Clark
& Pregibon (1992), includes a set of procedures for conducting classification and
regression tasks by the use of binary trees. Similarly, the well-known package
SPSS has recently become available with CHAID (CHi-squared Automatic In-
teraction Detector). This is based on earlier work by Kass (1980), which used
multiple, rather than binary, branching.

In the statistical field, tree-based methods dealt with uncertainty from the
beginning but, in computer science, the adaptation of this type of algorithm to
deal with noisy domains took place much more recently. Quinlan (1986) extended
the ID3 system, producing the C4.5 algorithm, to deal with the usual statistical
situation in which the attributes (independent variables) provide probabilities
of class membership, rather than definitive indications. Initially, computer sci-
entists were unaware of the penalties of constructing over-large trees, which is
actually equivalent to constructing models with more than an optimal number
of parameters, which is understood by statisticians as ‘overfitting’. However,
Quinlan (1986) rediscovered the problem and dealt with it by incorporating a
pruning phase into the algorithm. Thus, an over-large tree was grown to begin
with and then cut back to protect against overfitting.

In retrospect, it is obvious that the applicability of the first generation of
knowledge discovery systems of computer science ancestry, such as 1D3, was
very limited. In fact, they could be applied only in deterministic domains, such as
chess endgame analysis, in which there is no noise or uncertainty involved. Now,
it is increasingly apparent that, in order for a knowledge discovery system to be
able to deal with real-world applications, it must be able to handle noise. This is

% A more detailed review of these methods from a computer science perspective is
given in Liu & White (1991).



because noise is inevitable in most real-world applications. The data collected in
the real-world are based either on measurements or subjective judgements. Both
of these are subject to error. In order for the knowledge extracted from the data
to be useful in helping future decision making, the knowledge obtained must
be based on intrinsic relationship or structure in the data, rather than some ad
hoc features of the data such as noise. A less obvious source of error lies in the
relationship itself, which links the dependent variables with the attributes. In
many real-world examples, the independent variables available provide only an
incomplete indication of the value of the dependent variable, even when no errors
are present in the dataset itself. Statistical models typically concatenate all these
sources of error and express them as a single error term on the right-hand side
of an equation specifying the model.

About ten years ago, Quinlan (1986) made some useful modifications to TD3
to deal with noise. He pointed out that two modifications to ID3 are necessary
if it 1s to be able to operate with a noise-affected training set:

1. The algorithm must be able to deal with clashes (when two or more
cases have identical values for each attribute but belong to different
classes);

2. The algorithm must be able to decide when the testing of further
attributes will not improve the predictive performance of the decision
tree, i.e. to determine when to stop adding further branches to the
decision tree.

The first goal is achieved by using probabilistic induction. When the branching
process stops, if the cases at any given terminal node are not all of the same class,
then probabilities for membership of the various classes are assigned instead. The
conversion of these probabilities to predictions of class membership may then be
done either by using the obvious strategy of selecting the most likely class at
each terminal node or, if differential mis-classification costs are operating, either
by some sort of cost minimisation procedure such as described by Breiman et al.
(1984), or else by selecting an appropriate discrimination point on an ROC curve
(or its equivalent), in the manner described elsewhere by Liu et al. (1994, 1996)
and White & Liu (1997). There are two possible ways to achieve the second goal.
What Quinlan suggested doing, is to use some kind of ‘stopping rule’ to prevent
over-large decision trees being grown. The second solution to the problem is to
grow an over-large tree to begin with, and to prune it back to the right size.*
The various techniques for dealing with uncertainty are very important and,
in the past decade more and more research has been focused on problems in
this area. However, comparatively little attention has been paid to methods of
handling some special types of noise, such as missing values. Where data have
been collected for a particular purpose, known beforehand, it is often possible
to minimise, or even completely avoid, the occurrence of missing values for data
items. On the other hand, where data are collected as a by-product of some
other activity and subsequently subjected to some sort of data mining operation,

* A review of pruning techniques can be found in Mingers (1989).



missing values are much more likely to be present in substantial proportions.
The intention of this paper is to review and summarise techniques for dealing
with missing values that are used in tree-based classification methods and to
discuss the possibility of adapting these techniques to other knowledge discovery
approaches.

2 Decision-Tree Based Inductive Learning

The principle of tree-based inductive learning (Quinlan, 1986; Liu & White,
1991) is well-known. Basically, the idea is to build a learning algorithm to induce
classification rules in the form of a decision tree, by operating on a training set.
A training set usually consists of a set of past decision-making examples, each of
which is comprised of a number of attributes (variables) and a class membership
indicator. The decision tree obtained can then be used to classify future cases of
unknown class membership.

The task of constructing a decision tree from a training set is typically han-
dled by a recursive partitioning algorithm which, at each non-terminal node,
branches on that attribute which discriminates best between the cases filtered
down to that node. In order to decide which attribute to select to branch on,
some suitable attribute selection measure is needed (Liu & White, 1994). There
are many such measures which can be used for this purpose, such as transmitted
information® and x2. Definitions for both these measures are given in White
& Liu (1994, 1997). The importance of these criteria lies with their ability to
measure the association between the class and the other independent variables.
This enables the induced tree to reflect the classification structure of the original
data.

In situations where there are no missing values in the training set, tree build-
ing can proceed in the expected manner. However, if missing values do exist in
the training set, the way these missing values are dealt with will have some effect
on the tree building process. In the next section, various techniques for handling
missing values in such situations are reviewed.

After obtaining a classification tree, the next step is to use the tree to predict
the class membership of test cases. Again, this is very simple if there are no
missing values for the attributes of the case undergoing classification. However, if
the value of a particular attribute is required in order to classify a particular case
and that attribute has a missing value for that case, then simple classification
immediately becomes impossible because we do not know which branch to take
in order to classify the case. In order to carry out classifications under these
circumstances, other methods for handling missing values have to be used. Some
of these techniques are described in Section 4.

5 Transmitted information (Hr) is actually algebraically equivalent to information
gain, as described by Quinlan (1986). However, its formulation in the former terms
is particularly useful because it represents information about class membership trans-
mitted by the attribute concerned.



3 Dealing with Missing Values in Training Cases

As mentioned earlier, at each non-terminal node of the decision tree, that at-
tribute which gives the strongest association with class is selected to branch on.
In situations when there are no missing values for an attribute, the calculation of
association between class and that attribute is quite simple. It starts with cross-
tabulating class against that particular attribute in the following way. Suppose
that we are dealing with a problem with k classes and that an attribute, A, with [
distinct values is under consideration at a particular node. The following contin-
gency table (Table 1) can be constructed which represents the cross-tabulation
of class and attribute values for A:

Table 1. A cross-tabulation of class and attribute values, for attribute A.

al az ... 4p
C1 |nui|niz|. .. |nu| nix
Cs |na1|n2z|. .. |nau| nax
Cr [ngi|ng2l. .. |nki| nkx
Nx1 Nx2 . Ml | Nxx
where C; (i=1, 2, ..., k) and a; (j=1, 2, ..., ) represent class and attribute
values respectively; n;; (1=1, 2, ..., k; j=1, 2, ..., l) represent the frequency

counts of cases with attribute value a; and class C; and:

l
j=1
k
ne =) mij
i=1
k l
Nyx = g g ni; = N

i=1j=1

There are several ways to get around the problem of missing values of cases
in the training set. Obviously, the simplest way to deal with unknown attribute
values is just to ignore the cases containing them and base the calculation of
association on the contingency table constructed from only those cases which
have known values on this attribute. This is the method used in PREDICTOR
(White, 1987).

The second type of technique in dealing with missing values is to try to deter-
mine these values using other information. For example, Kononenko et al.(1984)



used class information to estimate missing attribute values. Let us assume that
the case with missing value on attribute A is of class C. The idea is to assign
the most probable value, a;, of attribute A to the missing value, given the class
membership of the case concerned. Another method suggested by Shapiro and
described by Quinlan (1986) is to use a decision tree approach to decide the
missing values of an attribute. It considers the subset S’; of the training set .S,
which consists of those cases whose value of attribute A is known. In S’, the
original class is regarded as another attribute while the value of attribute A
becomes the ‘class’ to be determined. Using S’, a classification tree can be built
for determining the value of attribute A from the other attributes and the class.
Then, this tree can be used to classify each object in the set S — S’. Conse-
quently, each missing value can be estimated. This is a very thorough technique
and makes good use of all the information available from the class variables and
all the other independent variables. However, it would appear that the technique
is appropriate only for sparse concentrations of missing values. Difficulties arise
if the same case has missing values on more than one attribute.

Quinlan (1986) proposed another two different methods. The first method
is to treat ‘unknown’ as a new possible value for each attribute and deal with
it in the same way as other values. However, this is appropriate only when
the missing values are informative, e.g. values recorded as missing because they
were too small or too large to be measured. Usually, missing values are missing
at random and, in these circumstances, the value ‘unknown’ does not have the
same status as a proper attribute value, i.e. whether or not a particular attribute
has a known value for a particular case does not provide information about class
membership of that case. Thus, this method cannot really be regarded as a
general solution to the problem of missing values. The second method is based
on the idea that cases with unknown values are distributed across the values
of A in proportion to the relative frequency of these values in the training set.
Consider a simple 2 x 2 contingency table with similar notation to that described
earlier, with m; (i = 1, 2) cases with missing value on attribute A, for each class
respectively. Then each frequency count of the contingency table i1s adjusted as

follows:
n*j

L
77,] = nij + m;
* %

where ¢, j = 1, 2. The attribute selection criterion is then calculated using the
adjusted frequency counts. When an attribute has been chosen by the selection
criterion, cases with unknown values of that attribute are discarded before going
to the next step of branching. This method can be too conservative. The follow-
ing example shows how it attenuates association between attribute and class.
Consider the following 2 x 2 contingency table of those cases whose value on
attribute A is known:

a1 az
Cy|5|0] 5
Cy|0]|5]5

5 510




where C; and a; (i = 1,2) represent class and attribute values respectively.
Suppose there are another five cases of class 1 and five cases of class 2 with
missing values on attribute A. Then, if we adjust the frequency counts according
to the column proportions (as in the formula above), the following table can be
derived:

a1 dp
C117.512.5] 10
C512.5|7.5] 10

10 10| 20

The x? and Hy of the first table are 10 and 1, while those of the second table are
only 5.556 and 0.236 respectively. This is obviously undesirable and misleading.

The reason why this method can give such unsatisfactory estimates for miss-
ing values is revealed if we take a statistical view of the process involved. To
put the matter simply, the procedure takes no account at all of the structure in
the data set. Missing value estimates are assigned merely on the basis of prior
attribute value probabilities. Kononenko’s method is better, because the esti-
mates are made conditional upon class membership. Thus, in the example just
considered, the adjusted frequencies become:

a1 az
Cy |10{0 |10
Cy |0 (10] 10
10 10| 20

This is clearly preferable.

4 Dealing with Missing Values in Test Cases

The other half of the story is how missing attribute values are dealt with during
classification of test cases. When classifying a case, if the value of a particular
attribute which was branched on in the tree is unknown, then classification
immediately becomes impossible because we do not know which branch to take
in order to classify this case. In order to carry out classifications under these
circumstances, other methods for handling missing values have to be used.

The procedure implemented by Quinlan (1986) is to explore all branches
(below the current node) and take into account that some are more probable
than others. This seems to be very clumsy and unsatisfactory. The other method
suggested by Breiman et al. (1984) is to use a surrogate split when a missing value
is found in the attribute originally chosen. The surrogate attribute is the one
which has the highest correlation with the original attribute. The efficacy of this
method obviously depends on the magnitude of the correlation in the database
between the original attribute and its surrogate.

There 1s another method, called dynamic path generation, proposed by White
(1987), which can offer great flexibility in dealing with missing values of this
type. Instead of generating the whole decision tree beforehand, the dynamic path



generation method produces only the path (i.e. the rule) required to classify the
case currently under consideration. This approach can deal with missing values
very flexibly. Once a missing value i1s found to be present in an attribute of
a new case, such an attribute is never branched on when classifying the case.
In more detail, let us consider the process of building a classification rule (i.e.
a path in a classification tree) to classify a new case O;. At each step, the
inductive algorithm chooses the most informative attribute on which to branch.
However, if the value of the selected attribute is missing in case O, then this
attribute cannot be branched on and the algorithm tries with the second most
informative attribute. Thus, path generation is strictly dynamic. Of course, this
approach is somewhat expensive in computational terms. However, if N-fold
cross-validation is required, then the technique becomes much more economical,
in comparative terms (Liu & White 1994). This is because, for N-fold cross-
validation, a fresh model needs to be constructed for each case, whatever method
is used. When combined with dynamic path generation, only a fresh path needs
to be constructed for the classification of each case. In other words, with dynamic
path generation, cross-validation imposes no extra cost penalty.

The approach of dealing with missing values in test cases in this way is also
referred to as the lazy decision tree method (Friedman et al., 1996). The reason
why this approach is called the lazy decision tree approach is because the creation
of a single ‘best’ tree is deferred. Instead, it constructs the ‘best’ tree for each
test instance. (In fact, only a classification path needs to be generated).

5 Discussion

In many real-world applications, missing values are often inevitable. Therefore,
every intelligent data analysis tool should be equipped with facilities to deal
with missing values. Unfortunately, many systems which have been built so far
still have very limited power in dealing with missing values. For example, most
orthodox statistical packages deal with missing values on a casewise deletion
basis, for most statistical procedures. This means that if any of the available
variables has a missing value for a particular case, then that case is omitted
from the analysis. Clearly, this may cause a huge waste of data and, as a result,
may not be satisfactory in some circumstances. For example, in the medical
database reported by White et al. (1996), if the casewise deletion method is
used, there are only 632 cases consisting entirely of non-missing values — fewer
than a quarter of the 2692 cases available in the original database. By contrast,
if the dynamic path generation method is used, missing values can be dealt with
very simply.

In fact, some of the techniques for dealing with missing values in decision
tree induction (reviewed in the previous sections) can be easily adapted to many
other model-based methods of data analysis. Take some statistical classification
method such as linear discriminant analysis or logistic regression as an example.
It is clear that:



— If an overall model is required 1n the training phase, then it is always possible
to estimate missing values by one of the techniques mentioned in Section 3.

— In order to deal with missing values in test cases, the ‘lazy’ approach could
be easily adapted. Instead of producing a single set of linear discriminant
functions (or a regression equation in the case of logistic regression) in the
training phase, we could construct a set of discriminant functions or a re-
gression equation for each test instance. This would ensure that variables
with missing values on a particular test case did not occur in the model con-
structed to classify that case. In this way, missing values are handled very
naturally.

To conclude, there is no fundamental reason why the lazy approach could
not even be extended to other techniques, such as genetic algorithms, in order
to prevent waste of information. Of course, the lazy approach can be expensive
in computational terms. However, with modern computer technology this is be-
coming less and less of a problem.
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