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Abstract Top Down Induction of Decision Trees (TDIDT) is the most coomty
used method of constructing a model from a dataset in the fdrodassification
rules to classify previously unseen data. Alternative allyms have been devel-
oped such as the Prism algorithm. Prism constructs modules which produce
qualitatively better rules than rules induced by TDIDT. Hwer, along with the in-
creasing size of databases, many existing rule learningritighs have proved to
be computational expensive on large datasets. To tacklprtidem of scalability,
parallel classification rule induction algorithms have bé@daroduced. As TDIDT
is the most popular classifier, even though there are styamhpetitive alterna-
tive algorithms, most parallel approaches to inducingsifasition rules are based
on TDIDT. In this paper we describe work on a distributed siffer that induces
classification rules in a parallel manner based on Prism.

1 Introduction

Scaling up data mining algorithms to massive datasets has teen more top-
ical. That is because of the fast and continuous increaskeimtimber and size
of databases. For example in the area of Molecular Dynan3),( simulations

are conducted which describe the unfolding and folding oftgins. These sim-
ulations generate massive amounts of data which researaherjust starting to
manage to store [7]. For example one single experiment caargee datasets of
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100s of gigabytes[6]. Researchers in the MD community wishgply data min-

ing algorithms on MD experimental data such as pattern tetecclustering or

classification[4]. However, most data mining algorithmsmnat scale well on such
massive datasets and thus researchers are forced to samplata to which they
want to apply their data mining algorithms. Catlett’'s wof §hows that sampling
of data results in a loss of accuracy in the data mining resiolivever, Catlett con-
ducted his experiments 16 years ago and referred to datdesathpt were much
smaller than those nowadays. Frey and Fisher [8] showedhbaate in increase of
accuracy slows down with the increase of the sample size.

However, scaling up is also an issue in applications thataneerned with the
discovery of knowledge from large databases rather thattiginee modelling. For
instance researchers are interested in discovering kdgelffom gene expression
datasets, for example concerning knowledge about the imduef drugs on the
gene expression levels of cancer patients. A drug might Beged to suppress
tumour promoting genes, so called oncogenes. In some dassaine drug might
also suppress genes that are not directly related to theutuamal thus cause adverse
effects which might be lethal in rare cases. If we would sanmgre, we might lose
data that may lead to the detection of rules that might ifiemtirisk in applying
a certain drug. Furthermore not only the number of exampléslso the number
of attributes which describe each example contributesdite of the dataset [5].
For example gene expression datasets often comprise tiigiga even tens of
thousands of genes which represent attributes in a reldtitata table.

We present work on a parallel data distributed classifieethas the Prism [3]
algorithm. We expect to be able to induce qualitatively gndds with a high accu-
racy and a sufficient scale up on massive datasets, such agxgemssion datasets.

2 Inducing Modular Classification Rules Using Prism

The Prism classification rule induction algorithm promisesnduce qualitatively
better rules compared with the traditional TDIDT algorithhecording to Cendrowska,
that is because Prism induces modular rules that have fewandancies compared
with TDIDT [3]. Rule sets such as:

IFa=1ANDb=1THEN CLASS =1
IFc=1ANDd=1THEN CLASS =2

which have no common variable cannot be induced directly DD [3]. Using
TDIDT would produce unnecessarily large and confusingsiecitrees. Cendrowska
presents the Prism algorithm [3] as an alternative to datisees. We implemented
a version of Prism that works on continuous datasets like gzpression data [11].
The basic Prism algorithm, for continuous data only, canuremsarised as shown
in figure 1, assuming that there ané> 1)possible classes. The aim is to gener-
ate rules with significantly fewer redundant terms than e¢haerived from decision
trees. Compared with decision trees Prism[1]:



Is less vulnerable to clashes
Has a bias towards leaving a test record unclassified rdtaergiving it a wrong
classification

e Often produces many fewer terms than the TDIDT algorithrhéfé are missing
values in the training set.

For each class i from 1 to a inclusive:

(a) Working dataset W=D
delete all records that match the rules that have been
derived so far for class i.
(b) For each attribute A in W:
- sort data according to A
- for each possible split value v of attribute A:
calculate the probability that the class is i for both
subsets A<vand Az2v
(c) Select the attribute that has the subset S with the overall
highest probability
(d) Build a rule term describing S
(e)w=s
(N Repeat b to d until the dataset contains only records of
class i. The induced rule is then the conjunction of all the
rule terms built at step d.
{g) Repeat (a) to (f) until all records of class i have been
removed.

Fig. 1 The basic Prism algorithm for continuous data comprises five tiésdps. The innermost
loop involves sorting of the data for every continuous attiet

However as shown in the algorithm in figure 1, the computaticequirements of
Prism are considerable, as the algorithm comprises fivedésbps. The innermost
loop involves sorting (contained in step b) the data for g\@mtinuous attribute
[11]. Loosely speaking Prism produces qualitatively stronles but suffers from
its high computational complexity.

We have removed the innermost loop by pre-sorting the data an the be-
ginning. We did that by representing the data in the form ofezbattribute lists.
Building of attribute lists is performed by decoupling trealinto data structures of
the form

(recordid, attribute valueclassvalug

for each attribute. Attribute lists were first introducediauccessfully used in the
SPRINT (Scalable PaRallelizable INduction of decisioreBjegroject for the paral-
lelisation of TDIDT[10]. The use of sorted attribute listzadbled us to keep the data
sorted during the whole duration of the Prism algorithm. Bynd so we achieved
a speedup factor of 1.8 [11].

The left-hand side of figure 2 illustrates the building ofibtite lists. Note that
all lists are sorted and all lists comprise a column with tdems (id) added so
that data records split over several lists can be recoristfués Prism removes
attribute lists that are not covered by the previously iredliule term, our classifier



Sorted Attribute Lists Attribute Lists After
Removal of Data

Id  Salary  Classes Records Not Covered
| by Term t

Training Dataset

1 15.9 B
id Salary Classes
id Savings Salary Classes 3 40.8 B
5 0.4 G 5 60.4 G
0 30.1 65.5 o 65.5 G o 65.5 G
1 235 15.9 5 A 2 5 B - = E
4 | 1007 G 58 || At 5
2 402 75 B
Best Rule Term t for
3 559 0.8 B class G = (Salary 2 60.4)
Id Savings Classes
4 55.9 100.7 G ‘ 1 23.5 B
\_ 0 30.1 G Id Savings Classes
5 454 60.4 G z i B 0 30.1 G
5 45.4 G 2 40.2 B
5 45.4 G
4 55.9 G N[N &

Fig. 2 The left hand side shows how sorted attribute lists are built hedight hand side shows
how list records, in this case records with the ids 1 and 3, arevedho Prism.

needs to remove list records in an analogous way. For exafriptism finds a rule
term (salary > 60.4) for class G then Prism would remove the list records with
the id values 1 and 3 as they are not covered by this rule. Matehe resulting list
records are still sorted. This fact eliminates multipldisgrof attribute lists. The use
of attribute lists in Prism enables us to parallelise the@dlgm in a shared nothing
environment, where each CPU has its own private memory, taydistribution [11].

3 Speeding up Prism by Parallelisation via a Distributed
Blackboard System

A blackboard system is a software architecture that siraglatgroup of experts in
front of a blackboard which have expertise in different ar@dnese experts commu-
nicate by reading new information from the blackboard,\deg new knowledge
from it and writing this new information again on to the blaockard, thus making it
accessible to the other experts. In the software architethe blackboard is based
on a server/client model. The server functions as a blacklenad the clients as ex-
perts. We are using an implementation of a distributed lieakd system developed
by the Nottingham Trent University [9]. In a similar way to laased memory ver-
sion of SPRINT [13] we want to parallelise Prism by distribgtl/k chunks of each
attribute list to k different expert machines. We want todyonise the algorithm
then by using the distributed blackboard system. Thus egmremachine will hold



a different part of the data and derive new knowledge fromthe form of a locally
best rule term. Then each expert machine will exchange tguaformation about
all locally best rule terms via the blackboard with the otlgpert machines.

4 Parallel Prism: Basic Architecture And Algorithm

As described in the previous section, the first step is todbaitribute lists and
distribute them to all expert machines. In the context ofalalrPrism (P-Prism),
we refer to the expert machines as Worker Machines as thegeigf parallelising
Prism is to split the workload, determined by the size of tiaéntng data, over k
CPUs.

Moderator Program < retrieve
Local Global othe
blackboard
Rule Term Information
Partition Partition «— it
Y to the
blackboard

Fig. 3 Architecture of P-Prism using a blackboard server comprisingaavtitions, a partition for
submitting rule terms to the blackboard (Local Rule Term Rartjtand one to advertise global
information (global information partition) to the worker maoés. The moderator program on the
blackboard derives the global information.

Figure 3 illustrates the basic architecture of P-Prismgisitblackboard server
which comprises two partitions, a partition for submittinde terms to the black-
board, the “Local Rule Term Partition” and one to advertideb@l information to
the worker machines, the “Global Information Partitionigére 4 depicts the basic
P-Prism algorithm. Each worker machine M induces indepetiga rule termty
for class i which is the best rule term to describe i on thelldaga on M. The qual-
ity of ty is measured in the form of the probabily with whichty covers class i
on the local data. Each M submig plus its associateBy to the "Local Rule Term
Partition” on the blackboard. The moderator program on thekiboard collects all
tms with their associateBy s and searches out the globally best rule term, which is
the one with the highe®y. The moderator program also provides global informa-



tion to the worker machines by writing it on to the "Global dnfnation Partition”.
The global information comprises the globally best rulenter identifiers for the
data covered by this rule term. Loosely speaking, globairmftion informs the
worker machines about the global state of the algorithm and how they shall
proceed, e.g. deriving a further rule term or starting a née.r

Step A: Step G:
- Derive initial attribute lists Moderator Program:
Step B: Afterall M contributed theirlocal rule terms:
- Distribute attribute lists to each expert -Determine globally bestrule term using
machine quality information.
- -Wiite globally bestrule term on the “Global
- Create an empty Rule Collection R and e &7
an emply ClassifierP Information* partition
SEp s Steg:l;mm
- < - a E
Do White ﬁD_ numberof classes): ki ieve ey ek m
Step D: IF(t, =t,) THEN
-P=P+R -Write by t,, uncovered IDs to the blackboard
-Delete all Rules in R ELSE
-DostepsEw H -Wait for uncovered ids being available on
Step E- the blackboard

- Retrieve by i, uncovered IDs
- Delete all list records thatmatcha
uncovered ID

- Restore initial atiribute lists

- Delete all ist records from all worker
machines M that are covered by the rules
derived for class i  whichare containedinR) |Step I:

- iF numberof remaining list records = 0 or do Moderator Program:

notcomprise class i THEN IF ail lists are of size 0
- Restore initial attribute lists =Ruler=r+t,
=i=iM -Rule CollectionR=R+r
-GOoTOsepD -GOoTOStepE

Step F: ELSE
Foreach workermachine M: FRUECSEE
- Find locally bestrule term 4, -GOTO StepE
- Wirite {, and its quality information on the
blackboard Server

- Observe blackboard for“Global Information™

Fig. 4 Outline of the basic structure of the P-Prism algorithm. The detmibution takes place in
step B and the parallelisation in step D.

Figure 4 outlines the rough structure of the proposed RyPalgorithm. The data
distribution takes place in step B by distributing the atite lists. The parallelisa-
tion takes place in steps F to | as here every worker machirieeddts local rule
term and waits for the global information to become avadain the blackboard.

5 Ongoing Work

So far we have set up a local area network with 4 worker mashane one black-
board server which is configured as described in section & nidderator program
has been implemented and is fully functional. The worker s simulate rule
term induction for a complete rule in order to test the motterprogram’s func-
tionality on the blackboard server. The next step is to fuliplement the worker
machines in order to test the computational performancefrfigm.



5.1 Reduction of the Data Volume Using Attribute Lists

Shafer claims in his paper [10] that attribute lists couldibed to buffer data to the
hard disc in order to overcome memory constraints. Howéudfering of attribute
lists involves many 1/O operations. As the data in attriligs is even larger than
the raw data, we expect a considerable slowdown of the rentfrPrism if we
use buffering of attribute lists. Thus we are working on a ified version of the
attribute list. As Prism mainly needs the class value distidn in a sorted attribute
list, we want to reduce memory usage by building class digtion lists instead of
attribute lists. Class distribution lists have the follogistructure:

(recordid, classvalug

The class distribution list is built out of a sorted attribdist by deleting the
attribute value column, thus the ids and class values inltss distribution list are
sorted according to the attribute values. The total sizbede lists is less than that
of the raw data and even less than that of the data in the fomttritfute lists. The
rules induced using class distribution lists will lead tterierms labelled with record
ids instead of the actual attribute values. After all rulesiaduced, the record ids
can easily be replaced by the actual attribute values.

The amount of memory (S) needed for Prism working on the raw cizn be de-
scribed by the formul&= (8xn+ 1) *x mbytes, where n is the number of attributes
and m is the number of data records. We assume that eight isyites amount of
memory needed to store an attribute value (assuming doubdéspn values) and
one byte to store a class value assuming a character refagsenThese assump-
tions would perfectly apply to gene expression data as a gemession value is a
double precision value. The storage needed by Prism to Mdhkattribute lists in
memory can be described analogously by the forB#a(8+ 4+ 1) x nxmbytes.
Again, the eight bytes represent an attribute value and tieebgte a class value.
The four byte value corresponds to an integer value for ardeicbin the attribute
list. Representing the training data with the class distiin list structure instead
of the attribute list structure eliminates the eight bytelatte values and thus only
requires a memory usage 8 (4+ 1) x nx mbytes [11].

However, attribute lists without the actual attribute watannot be used exactly
as stated above. We need to find a way to deal with repeatédalitdtvalues. Figure
5 illustrates the problem of repeated attribute values. attrébute list on the left
hand side would findX < 2.1) as the rule term for the attribute X regarding class C
with a covering probability of 0.67. The class distributiest on the right hand side
in figure 5 represents our class distribution list with ol tds and the class values.
Using only the class distribution without incorporatindammation about repeated
attribute values for finding the best rule term would lead tala term of the form
(X > id0) for class C with a covering probability of 1. But the value oBXid O is
8.7, which leads to the actual rule te(iX > 8.7) which has a covering probability
of only 0.5 as data records with ids 3 and O are also covereddiytérm. Thus we
need to mark repeated attribute values in our class disimiblist structure.



Finding a possible rule term for class C concerning attribute
X using two different representations

<record id, attribute value, class value> <record id, class value>

1
1
1
I [leess |
1
521 |B X2 f)forpm ! 5 |B
7 |21 |c 0.67 : 7|c
6 |21|cC i 6 |C
1[33]A : 1A
2 |35|B 1 2 B
9 (6.6 A : 9 A
3 |87|B 1 3 |B
0 (87 A : 0 A
4(87/c 1 [4]6 || x>idoyforp=1
8 (87|C : 8 [C

Fig. 5 Finding a possible rule term in a class distribution list withoatihg the attribute values
can lead to low wrong rule terms

One possible way to mark repeated attribute values in thes destribution list
is to add another column “indicator” which is a flag that iradies repeated values,
e.g. we could use an integer that is O if the list record cpords to a repeated
attribute value or 1 if not. Thus the class distribution stucture would have to
be altered tdindicator, record id, classvalug. This also leads to an altered formula
for the memory usage which 8= (4+ 1+ 1) xnxm. The additional byte here
corresponds to the added indicator. The resulting S woillébstsmaller than those
for the raw data and the traditional attribute list struetu€oncerning memory us-
age a better way is to use signed integers for the record tokeirtlass distribution
list structure. Positive record ids can be used for nonatgakattribute values and
negative ids for repeated ones. The formula for the memaageibere would re-
main the same, but the disadvantage of using signed integtrat we could only
represent 2ldata records instead of2for unsigned integers. Another way to rep-
resent repeated attribute values without using additiorehory or signed integers
is using upper case and lower case characters for the clagswa order to indicate
repeated attribute list values. For example using lowee &etters for non-repeated
values and upper case letters for repeated values.

Table 1 shows the actual memory usage of Prism working wittdiata, attribute
lists and our class distribution list calculated using sidjimtegers or upper case and
lower case class values and usiig: (4+ 1) = n+mbytes for the memory usage of
the class distribution list. The datasets are gene expressitasets concerning sev-
eral diseases which can be retrieved from http://sdnmarditsg/GEDatasets/ except
the SAGE-tag and Affymetix dataset. They can be found at taeeCGExpression
Omnibus (GEO) [12]. We clearly see that using attributeslggteatly increases the
memory required to store the training data. We also see lleatlass distribution
list outperforms the representation of data using both rata end attribute lists in
relation to memory requirements.



Table 1 Examples of the memory usage of several gene expression datasetsmnuBing raw
dataSl = (8« n+ 1) «m; using the attribute list structui® = (8+ 4+ 1) x n+m and using our
proposed class distribution list structB&= (4+ 1) *n+m. The datasets are gene expression data,
thus the number of attributes is determined by the number ofsggéllevalues for memory usage
are stated in megabytes.

Dataset Genes(n) Examples(m) S1 S2 S3
ALL/AML Leukaemia 7129 48 274 445 171
Breast cancer outcome 24481 78 15.28 24.82 9.55
CNS embryonal tumour 7129 60 342 556 214
Colon tumour 7129 62 342 575 221
Lung cancer 12533 32 321 521 201
Prostate cancer 12600 102 10.28 16.71 6.43
Prostate cancer outcome 12600 21 212 344 132
Affymetix 12332 1640 161.80 262.92 101.12
SAGE-tag 153204 243 297.83 483.97 186.14

5.2 Synchronisation

Further work will be conducted on the synchronisation ofdrstributed classifier.
In particular several worker machines will have to wait forther information on
the blackboard after they write their rule term plus its gyah the form of the

covering probability on the backboard. This idle time cobédused, for example,
to induce locally terms for a different class value.

6 Conclusions

This paper describes work on scaling up classification ndagtion on massive data
sets. We first discussed why classification rule inductioedseo be scaled up in
order to be applicable to massive data sets and focused ati@ufza classification
rule induction algorithm. The algorithm we focused on is Brésm algorithm. It
is an alternative algorithm to decision trees which indumeslular rules that are
qualitatively better than rules in the form of decision seespecially if there is
noisy data or there are clashes in the dataset.

Unfortunately Prism is computationally much more expea#ihan decision tree
induction algorithms and thus is rarely used. We descrihedvork we did to scale
up the serial version of Prism by applying presorting medmas to it, which re-
sulted in a speed up factor of 1.8. We further introduceddba bf scaling up Prism
by distributing the workload in the form of attribute listeey several machines in a
local area network and inducing rules in parallel.

We described the basic algorithm and architecture of thalleaversion of Prism
which we call P-Prism. We aim to parallelise Prism by usingsaridbuted black-
board system via which Worker Machines exchange informattmout their locally
induced rule terms.



We further outlined how we can reduce the size of the dataribatls to be
held in memory by each worker machine by using class didtdbdists rather than
attribute lists. We described the problem that repeateibatit values will cause if
we use class distribution lists, proposed 3 different wayesolve the problem and
concluded that using an upper and lower case representdtibe class value is the
best solution.

A further problem we briefly addressed is synchronisatiomadrticular the idle
time of worker machines caused by waiting for global infotima We propose to
use this idle time to induce a rule term for a different clasisi® in the meantime.
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