
Parallel Induction of Modular Classification

Rules

Frederic Stahl1, Max Bramer1 and Mo Adda1

Abstract The Distributed Rule Induction (DRI) project at the University of

Portsmouth is concerned with distributed data mining algorithms for automatically

generating rules of all kinds. In this paper we present a system architecture and its

implementation for inducing modular classification rules in parallel in a local area

network using a distributed blackboard system. We present initial results of a

prototype implementation based on the Prism algorithm.

1. Introduction

The field of Data Mining from large collections of data has experienced a

considerable upsurge of commercial interest and research activity in recent years.

So far relatively little attention has been given to distributing or parallelising

data mining algorithms, but as the size of datasets requiring analysis continues to

increase it seems inevitable that this will become a major focus of attention. Most

data mining algorithms make the implicit assumption that all the training data can

be stored and processed in main memory. It is common practice to take a sample

of stored data to form a training set for analysis, but as long ago as 1992,

Catlett[1] pointed out the loss of predictive accuracy that can result from sampling

very large training sets. The datasets considered very large at that time would be

considered commonplace by today‟s standards. In scientific fields such as

bioinformatics and cosmology it may be particularly important to process all the

data available or risk overlooking valuable relationships in the data.

The Distributed Rule Induction (DRI) project at the University of Portsmouth is

concerned with distributed data mining algorithms for automatically generating

rules of all kinds. Most rule induction has been for the purpose of classification [2]

and the most common approach to classification rule generation is via the

intermediate form of a decision tree [2]. Although popular this method suffers

from the problem of overfitting and it is generally considered desirable to post-

1 School of Computing, University of Portsmouth, PO1 3HE, UK

{Frederic.Stahl; Max.Bramer; Mo.Adda}@port.ac.uk

Frederic Stahl, Max Bramer and Mo Adda

prune the trees generated before converting them to rules and then to process the

rules further to remove overfitted terms as far as possible [3]. This seems an

unnecessarily indirect way to generate rules, especially when there are algorithms

that will generate them directly, albeit ones that are less widely known.

The Prism algorithm was developed as an alternative to decision tree generation

[4]. For continuous data the algorithm can be summarised as follows, assuming

that there are n (>1) possible classes [5].

 For each class i from 1 to n inclusive:

(a) working dataset W = initial Dataset;

 delete all records that match the rules that have

 been derived so far for class i;

(b) For each attribute A in W

 - sort the data according to A;
 - for each possible split value v of attribute A

 calculate the probability that the class is i

 for both subsets A < v and A ≥ v;

(c) Select the attribute that has the subset S with

 the overall highest probability;

(d) build a rule term describing S;

(e) W = S;

(f) Repeat b to e until the dataset contains only

 records of class i. The induced rule is then

 the conjunction of all the rule terms built at

 step d;

(g) Repeat a to f until all records of class i have

 been removed;

Cendrowska‟s original version of Prism requires the training set to be processed

once for each class. It is restored to its original form before each new class is

processed. A faster version of Prism has been developed by one of the present

authors [6], called PrismTCS (Prism with Target Class, Smallest first) which

maintains a similar level of predictive accuracy. After each rule induced

PrismTCS computes the target class that covers the fewest instances and induces a

new rule for that target class. Thus PrismTCS removes the outermost loop and

lowers Prism‟s complexity. We removed the innermost loop, the multiple sorting

of the dataset, by building attribute lists similar to those in the SPRINT algorithm

[5, 7] of the structure <record id, attribute value, class value>.

Figure 1 shows experimental results with pre-sorting on the diabetes dataset

[8]. We appended the data to itself either „vertically‟ or „horizontally‟ to obtain

datasets with an increasingly large number of instances or attributes, respectively.

We refer to data created by appending in the vertical direction as portrait data and

to data created by appending in the horizontal direction as landscape data.

The speedup factors for all runs were positive, however decreasing for portrait

data with increasing number of instances. However for data in landscape format

the advantage of pre-sorting is increasingly linear.

Parallel Induction of Modular Classification Rules

Figure 1 The speedup factors plotted versus the relative dataset size for datasets growing towards

landscape and portrait format.

A version of PrismTCS incorporating the pre-sorting technique is currently

being implemented. We expect that this will lead to higher speedups.

2. P-Prism: A Parallel Modular Classification Rule Induction

Algorithm

There have been several attempts to scale up classification rule induction via

parallelisation. In the area of TDIDT we have already mentioned the SPRINT [7]

algorithm. Here we focus on parallelising modular classification rule induction

using a “shared nothing” or “massively parallel processors” (MPP) system. Our

reasoning is that MPP can be represented by a network of workstations and thus is

a cheap way of running parallel algorithms. We implemented the parallel Prism

(P-Prism) algorithm in a logical master worker fashion by running the basic Prism

algorithm on a master machine and outsourcing the computationally expensive

tasks, the induction of rule terms, to worker machines in the network. As a

communication platform between the Prism algorithm and the worker machines

we used a distributed blackboard system architecture based on the DARBS

distributed blackboard system [9]. A blackboard system can be imagined as a

physical blackboard which is observed by several experts with different

knowledge domains, having a common problem to solve. Each expert uses its

knowledge domain plus knowledge written on the blackboard to infer new

knowledge about the problem and advertise it to the other experts by writing it on

the blackboard. In the software model such a blackboard system can be

represented by a client-server architecture. The basic architecture of P-Prism is

shown in Figure 2.

Frederic Stahl, Max Bramer and Mo Adda

Figure 2. The architecture of the P-Prism algorithm using a distributed blackboard system in

order to parallelise the induction of modular rule terms.

The attribute lists are distributed over k expert machines. The moderator program

on the blackboard server implements the Prism algorithm, with the difference

from the serial version that it delegates the rule term induction to the expert

machines. The blackboard system is partitioned into two logical partitions, one to

submit local rule term information and one to retrieve global information about the

algorithm‟s status. Every expert is able to induce the rule term that is locally the

best one for the attribute lists it holds. It then writes the induced rule term plus its

covering probability and how many instances the rule term covers on the local rule

term information partition and awaits the global information of how to continue.

The following steps listed below describe how P-Prism induces one rule:

Step 1 Moderator (P-Prism) writes on “Global Information Partition”

the command to induce locally best rule terms.

Step 2 All Experts induce the locally best rule term and write the

rule terms plus its covering probability and the number of

list records covered on the “local Rule Term Partition”

Step 3 Moderator (P-Prism) compares all rule terms written on the

“Local Rule Term Partition”; adds best term to the current

rule; writes the name of the Expert that induced the best rule

term on the Global Information Partition

Step 4 Expert retrieves name of winning expert.

IF Expert is winning expert {

 derive by last induced rule term uncovered ids and write

 them on the “Global Information Partition” and delete

 uncovered list records

 }

ELSE IF Expert is not winning expert {

 wait for by best rule term uncovered ids being available

 on the “Global Information Partition”, download them and

 delete list records matching the retrieved ids.

 }

In order to induce the next rule term, P-Prism would loop back to step one. For

P-Prism to know when to stop the rule it needs to know when the remaining list

Parallel Induction of Modular Classification Rules

records on the expert machines are either empty or consist only of instances of the

current target class. This information is communicated between the winning

expert and the moderator program using the Global Information Partition.

3. Experimental Results

The first prototype of the P-Prism classifier has been implemented and we have

carried out an initial validation in order to identify constraints for future

developments. We have carried out experiments with 3 different configurations of

P-Prism and serial Prism with attribute lists. We used the yeast dataset [8] which

comprises 1484 instances, but repeatedly appended the data to itself „vertically‟ to

achieve datasets with from 5000 to 35000 instances. Both versions of Prism, the

serial and the parallel, produce identical rule sets (with 970 terms) on any of the

yeast datasets.

Figure 3 The efficiency calculated as the percentage of the actual speedup factors based on the

ideal speedup factors for configurations of P-Prism with one (serial Prism), two, four and six

expert machines.

The efficiency is the fraction of the actual speedup factor based on the ideal

speedup factor of P-Prism. However achieving an ideal speedup factor is

unrealistic as in any MPP environment we have to take overheads in bandwidth

and workload balancing into account. The efficiencies for all P-Prism

configurations increase with an increasing number of instances up to a workload

of about 17000 instances. From then on the efficiency levels off, ranging from

85% to 89%. As already mentioned the discrepancy from 100% efficiency can be

explained by communication overheads and workload balancing issues. However

further speedup experiments are planned with more instances and more expert

machines to examine the breakeven point of possible expert machines.

Frederic Stahl, Max Bramer and Mo Adda

4. Ongoing and Future Work

Our experiments with P-Prism were based on the assumption that all expert

machines have the same computational resources. This is not realistic and so we

are currently working on an initial workload balancing strategy. All attribute lists

will initially be advertised on a central server. Each expert will take an attribute

list from the server, process it by scanning it for covering probabilities, and if

there are more attribute lists left, it will take further ones until there are no

attribute lists left. This will lead to an initial workload balancing as faster expert

machines will retrieve more attribute lists from the scoreboard. A parallel version

of PrismTCS based on P-Prism is also in development with which we hope to

obtain better scale up results than those for P-Prism.

Our experiments with Prism show the value of the methods we have adopted.

Prism has been used as an exemplar of an important class of rule generation

algorithms, where each attribute can be processed independently of the others as

rule terms are generated. Most rule covering algorithms are of this kind, including

those for generalized rule induction (where the right-hand side of each rule can

potentially be a conjunction of attribute/value pairs for any combination of

categorical attributes) as well as classification.

References

1. Catlett J., Megainduction: Machine learning on very large databases. 1991, University

of Technology, Sydney.

2. Quinlan J. R., Induction of decision trees. Machine Learning. Vol. 1. 1986. 81-106.

3. I.Witten and E.Frank. Data Mining: Practical Machine Learning Tools and Techniques.

Elsevier, 2005.

4. Cendrowska J., PRISM: an Algorithm for Inducing Modular Rules. International Journal

of Man-Machine Studies, 1987. 27: p. 349-370.

5. Stahl F. and Bramer M., Towards a Computationally Efficient Approach to Modular

Classification Rule Induction. Twenty-seventh SGAI International Conference on

Innovative Techniques and Applications of Artificial Intelligence, 2007.

6. Bramer M., An Information-Theoretic Approach to the Pre-pruning of Classification

Rules. Proceedings of the IFIP Seventeenth World Computer Congress - TC12 Stream

on Intelligent Information Processing. 2002: Kluwer, B.V. 201-212.

7. Shafer J. C., Agrawal R., and Mehta M., SPRINT: A Scalable Parallel Classifier for

Data Mining. Twenty-second International Conference on Very Large Data Bases, 1996.

8. Blake C. L. and Merz C. J, UCI repository of machine learning databases. 1998,

University of California, Irvine, Department of Information and Computer Sciences.

9. Nolle L., Wong K. C. P., and Hopgood A., DARBS: A Distributed Blackboard System.

Twenty-first SGES International Conference on Knowledge Based Systems, 2001.

