
Parallel Random Prism: A Computationally
Efficient Ensemble Learner for Classification

Frederic Stahl, David May and Max Bramer

Abstract Generally classifiers tend to overfit if there is noise in the training data or
there are missing values. Ensemble learning methods are often used to improve a
classifier’s classification accuracy. Most ensemble learning approaches aim to im-
prove the classification accuracy of decision trees. However, alternative classifiers
to decision trees exist. The recently developed Random Prism ensemble learner for
classification aims to improve an alternative classification rule induction approach,
the Prism family of algorithms, which addresses some of the limitations of deci-
sion trees. However, Random Prism suffers like any ensemble learner from a high
computational overhead due to replication of the data and the induction of multi-
ple base classifiers. Hence even modest sized datasets may impose a computational
challenge to ensemble learners such as Random Prism. Parallelism is often used to
scale up algorithms to deal with large datasets. This paper investigates parallelisa-
tion for Random Prism, implements a prototype and evaluates it empirically using a
Hadoop computing cluster.

1 Introduction

The basic idea of ensemble classifiers is to build a predictive model by integrating
multiple classifiers, so called base classifiers. Ensemble classifiers are often used to

Frederic Stahl
Bournemouth University, School of Design, Engineering & Computing , Poole House, Talbot Cam-
pus, Poole, BH12 5BB e-mail: fstahl@bournemouth.ac.uk

David May
University of Portsmouth, School of Computing, Buckingham Building, Lion Terrace, PO1 3HE
e-mail: David.May@myport.ac.uk

Max Bramer
University of Portsmouth, School of Computing, Buckingham Building, Lion Terrace, PO1 3HE
e-mail: Max.Bramer@port.ac.uk



Frederic Stahl, David May and Max Bramer

improve the predictive performance of the ensemble model compared with a single
classifier [24]. Work on ensemble learning can be traced back at least to the late
1970s, for example the authors of [13] proposed using two or more classifiers on
different partitions of the input space, such as different subsets of the feature space.
However probably the most prominent ensemble classifier is the Random Forests
(RF) classifier [9]. RF is influenced by Ho’s Random Decision Forests (RDF) [18]
classifier which aims to generalise better on the training data compared with tra-
ditional decision trees by inducing multiple trees on randomly selected subsets of
the feature space. The performance of RDF has been evaluated empirically [18].
RF combines RDF’s approach with Breiman’s bootstrap aggregating (Bagging) ap-
proach [8]. Bagging aims to increase a classifier’s accuracy and stability. A stable
classifier experiences a small change and an unstable classifier experiences a major
change in the classification if there are small changes in the training data. Recently
ensemble classification strategies have been developed for the scoring of credit ap-
plicants [19] and for the improvement of the prediction of protein structural classes
[30]. Chan and Stolfo’s Meta-Learning framework [11, 12] builds multiple hetero-
geneous classifiers. The classifiers are combined using a further learning process, a
meta-learning algorithm that uses different combining strategies such as voting, ar-
bitration and combining. Pocket Data Mining, an ensemble classifier for distributed
data streams in mobile phone networks has recently been developed [25]. In Pocket
Data Mining the base classifiers are trained on different devices in an ad hoc net-
work of smart phones. Pocket Data Mining has been tested on homogeneous and
heterogeneous setups of two different data stream classifiers, Hoeffding Trees [15]
and incremental Naive Bayes, which are combined using weighted majority voting
[27].

Most rule based classifiers can be categorised in the ‘divide and conquer’ (in-
duction of decision trees) [23, 22] and the ‘separate and conquer’ approach [28].
‘Divide and conquer’ produces classification rules in the intermediate form of a
decision tree and ‘separate and conquer’ produces IF...THEN rules that do not nec-
essarily fit into a decision tree. Due to their popularity most rule-based ensemble
base classifiers are based on decision trees. Some ensemble classifiers consider het-
erogeneous setups of base classifiers such as Meta-Learning [11, 12], however in
practice the base classifiers used are different members of the ‘divide and conquer’
approach. A recently developed ensemble classifier that is inspired by RF and based
on the Prism family of algorithms [10, 5, 6] as base classifiers is Random Prism
[26]. The Prism family of algorithms follows the ‘separate and conquer’ approach
and produces modular classification rules that do not necessarily fit into a decision
tree. Prism algorithms produce a comparable classification accuracy compared with
decision trees and in some cases, such as if there is a lot of noise or missing values,
even outperform decision trees.

Random Prism has been evaluated empirically in [26] and shows a better classifi-
cation accuracy in most cases compared with its standalone base classifier. Further-
more unpublished empirical experiments of the authors show that Random Prism
has also a higher tolerance to noise compared with its standalone base classifier.
Yet some results presented in [26] show that Random Prism consumes substantially



Parallel Random Prism

more CPU time compared with its standalone Prism base classifier on the same
training data size. This is because like many ensemble classifiers such as RF, Ran-
dom Prism builds multiple bags of the original training data and hence has to process
a multiple of the training data compared with its stand alone base Prism classifier.
However, as the runtime of ensemble learners is directly dependent to the training
data size and the number of base classifiers, they could potentially be parallelised
by training the individual classifiers on different processors. Google’s MapReduce
[14] framework and its free implementation named Hadoop [1] is a software frame-
work for supporting distributed computing tasks on large datasets in a computer
cluster. MapReduce’s potential to scale up Random Prism is given through ensem-
ble learning approaches that make use of MapReduce such as [21, 29, 3]. However
most parallel ensemble approaches are based on decision trees. The work presented
in this paper presents a computationally scalable parallel version of the Random
Prism ensemble classifier that can be executed using a network of standard work-
stations utilising Google’s MapReduce paradigm. The proposed Parallel Random
Prism classifier is evaluated empirically using the free Hadoop [1] implementation
of the MapReduce framework in a network of computer workstations. Parallelising
Random Prism using Hadoop is particularly interesting as Hadoop makes use of
commodity hardware and thus is also, from the hardware point of view, an inexpen-
sive solution.

The remainder of this paper is organised as follows: Section 2 highlights the
PrismTCS approach, a member of the Prism family of algorithms, which has been
used as base classifier. Section 2 also highlights the Random Prism approach. The
prototype of Parallel Random Prism is proposed in Section 3 and evaluated empiri-
cally in Section 4. Ongoing and possible future work is discussed in Section 5 and
concluding remarks are presented in Section 6.

2 Random Prism

This section highlights first the basic rule induction approach: the Prism / PrismTCS
classifier and compares the rulesets induced by Prism / PrismTCS with decision
trees. The second part of this section introduces the Random Prism algorithm, and
discusses its computational performance briefly.

2.1 The PrismTCS Approach

The intermediate representation of classification rules in the form of a decision tree
is criticised in Cendrowska’s original Prism paper [10]. Prism produces modular
rules that do not necessarily have attributes in common such as the two rules below:

IF A = 1 AND B = 1 THEN class = x



Frederic Stahl, David May and Max Bramer

IF C = 1 AND D = 1 THEN class = x

These modular rules cannot be represented in a decision tree without adding
unnecessary rule terms. For this example it is assumed that that each of the four at-
tributes represented in the rules above have three possible values 1, 2 and 3. Further
it is assumed that all data instances matching any of the two rules above is labelled
with class x and the remaining instances with class y. According to Cendrowska
[10], forcing these rules into a tree structure would lead to the tree illustrated in
Figure 1.

Fig. 1 The replicated subtree problem based on Cendrowska’s example in her original Prism Paper.
The shaded subtrees highlight the replicated subtrees.

This will result into a large and needlessly complex tree with potentially unneces-
sary and possibly expensive tests for the user, which is also known as the replicated
subtree problem [28].

All ‘separate and conquer’ algorithms follow the same top level loop. The al-
gorithm induces a rule that explains a part of the training data. Then the algorithm
separates the instances that are not covered by the rules induced so far and conquers
them by inducing a further rule that again explains a part of the remaining training
data. This is done until there are no training instances left [16].

Cendrowska’s original Prism algorithm follows this approach. However it does
not not scale well on large datasets. A version of Prism that attempts to scale up to
larger datasets has been developed by one of the authors [6] and is also utilised for
the Random Prism classifier.

There have been several variations of Prism algorithms such as PrismTC, PrismTCS
and N-Prism which are implemented in the Inducer data mining workbench [7].
However PrismTCS (Target Class Smallest first) seems to have a better computa-
tional performance compared with the other Prism versions whilst maintaining the
same level of predictive accuracy [26].

PrismTCS is outlined below using pseudocode [26]. Ax denotes a possible at-
tribute value pair and D the training data. Rule setrules = newRule set() creates a



Parallel Random Prism

new ruleset, Rule rule = new Rule(i) creates a new rule for class i, rule.addTerm(Ax)
adds attribute value pair Ax as a new rule term to the rule, and rules.add(rule) adds
the newly induced rule to the ruleset.

D’ = D;
Rule_set rules = new Rule_set();

Step 1: Find class i that has the fewest instances in the training
set;
Rule rule = new Rule(i);

Step 2: Calculate for each Ax p(class = i| Ax);
Step 3: Select the Ax with the maximum p(class = i| Ax);

rule.addTerm(Ax);
Delete all instances in D’ that do not cover rule;

Step 4: Repeat 2 to 3 for D’ until D’ only contains instances
of classification i.

Step 5: rules.add(rule);
Create a new D’ that comprises all instances of D except
those that are covered by all rules induced so far;

Step 6: IF (D’ is not empty)
repeat steps 1 to 6;

2.2 Random Prism Classifier

The basic Random Prism architecture is highlighted in Figure 2. The base classifiers
are called R-PrismTCS and are based on PrismTCS. The prefix R denotes the ran-
dom component in Random Prism which comprises Ho’s [18] random feature subset
selection and Breiman’s bagging [8]. Both random components have been chosen
in order to make Random Prism generalise better on the training data and be more
robust if there is noise in the training data. In addition to the random components,
J-pruning [6], a rule pre-pruning facility has been implemented. J-pruning aims to
maximise the theoretical information content of a rule while it is being induced.
J-pruning does that by triggering a premature stop of the induction of further rule
terms if the rule’s theoretical information content would decrease by adding further
rule terms. In general, the reason for chosing PrismTCS as base classifier is that it is
the computationally most efficient member of the Prism family of algorithms [26].

In Random Prism the bootstrap sample is taken by randomly selecting n instances
with replacement from the training data D, if n is the total number of training in-
stances. On average each R-PrismTCS classifier will be trained on 63.2 % of the
original data instances [26]. The remaining data instances, on average 36.8 % of the
original data instances, are used as validation data for this particular R-PrismTCS
classifier.

The pseudocode below highlights the R-PrismTCS algorithm [26] adapted from
the PrismTCS pseudocode in Section 2.1. M denotes the number of features in D:

D’ = random sample with replacement of size n from D;
Rule_set rules = new Rule_set();

Step 1: Find class i that has the fewest instances in the training
set;
Rule rule = new Rule(i);

Step 2: generate a subset F of the feature space of size m where
(M>=m>0);



Frederic Stahl, David May and Max Bramer

Fig. 2 The Random Prism Architecture using the R-PrismTCS base classifiers and weighted ma-
jority voting for the final prediction.

Step 3: Calculate for each Ax in F p(class = i| Ax);
Step 4: Select the Ax with the maximum p(class = i| Ax);

rule.addTerm(Ax);
Delete all instances in D’ that do not cover rule;

Step 5: Repeat 2 to 4 for D’ until D’ only contains instances
of classification i.

Step 6: rules.add(rule);
Create a new D’ that comprises all instances of D except
those that are covered by all rules induced so far;

Step 7: IF (D’ is not empty)
repeat steps 1 to 7;

For the induction of each rule term a different randomly selected subset of the
feature space without replacement is drawn. The number of features drawn is a
random number between 1 and M. The pseudocode outlined below highlights the
Random Prism training approach [26], where k is the number of base classifiers and
i is the ith R-PrismTCS classifier:

double weights[] = new double[k];
Classifiers classifiers = new Classifier[k];
for(int i = 0; i < k; i++)

Build R-RrismTCS classifier r;
TestData T = instances of D that have not been used to induce r;
Apply r to T;
int correct = number of by r correctly classified instances in T;
weights[i] = correct/(number of instances in T);

The pseudocode highlighted above shows that for each R-PrismTCS classifier a
weight is also calculated. As mentioned above, for the induction of each classifier
only about 63.2% of the total number of training instances are used. The remaining
instances, about 36.8% of the total number of instances are used to calculate the
classifier’s accuracy which we call its weight. As mentioned earlier in this section,
Random Prism uses weighted majority voting, where each vote for a classification
for a test instance corresponds to the underlying R-PrismTCS classifier’s weight.
This is different from RF and RDF which simply use majority voting. Random Prism



Parallel Random Prism

also uses a user defined threshold N which is the minimum weight a R-PrismTCS
classifier has to provide in order to take part in the voting.

3 Parallelisation of the Random Prism Classifier

The runtime of Random Prism has been measured and compared with the runtime
of PrismTCS as shown in Table 1 and as published in [26]. Intuitively one would
expect that the runtime of Random Prism using 100 PrismTCS base classifiers is
100 times slower that PrismTCS. However, the runtimes shown in Table 1 clearly
show that this is not the case, which can be explained by the fact that Random Prism
base classifiers do not use the entire feature space to generate rules, which in turn
limits the search space and thus the runtime. Nevertheless Random Prism is still
multiple times slower than PrismTCS, hence parallelisation has been considered in
[26] and is now described in this section.

Table 1 Runtime of Random Prism on 100 base classifiers compared with a single PrismTCS
classifier in milliseconds.

Dataset Runtime PrismTCS Runtime Random Prism
monk1 16 703
monk3 15 640

vote 16 672
genetics 219 26563

contact lenses 16 235
breast cancer 32 1531

soybean 78 5078
australian credit 31 1515

diabetes 16 1953
crx 31 2734

segmentation 234 15735
ecoli 16 734

balance scale 15 1109
car evaluation 16 3750

contraceptive method choice 32 3563

For the parallelisation of Random Prism we used Apache Hadoop, which is an
application distribution framework designed to be executed in a computer cluster
consisting of a large number of standard workstations. Hadoop uses a technique
called MapReduce. MapReduce splits an application into smaller parts called Map-
pers. Each Mapper can be processed by any of the workstations in the nodes in the
cluster. The results produced by the Mappers are then aggregated and processed by
one or more Reducer nodes in the cluster. Hadoop also provides its own file system,
the Hadoop Distributed File System (HDFS). HDFS distributes the data over the
cluster and stores the data redundantly on multiple cluster nodes. This speeds up



Frederic Stahl, David May and Max Bramer

data access. Failed nodes are automatically recovered by the framework providing
high reliability to the application.

Fig. 3 A typical setup of a Hadoop computing cluster with several Mappers and Reducers. A
physical computer in the cluster can host more than one Mapper and Reducer.

Figure 3 highlights a typical setup of a Hadoop computing cluster. Each node in a
Hadoop cluster can host several Mappers and Reducers. In Hadoop large amounts of
data are analysed by distributing smaller portions of the data to the Mapper machines
plus a function to process these data portions. Then the results of the Mappers (in-
termediate files) are aggregated by passing them to the Reducer. The Reducer uses
a user defined function to aggregate them. Hadoop balances the workload as evenly
as possible by distributing it as evenly as possible to the Mappers. The user is only
required to implement the function for the Mapper and the Reducer.

We utilised Hadoop for the parallelisation of Random Prism as depicted in Fig-
ure 4. In Random Prism the Mapper builds a different bagged version of the training
data and uses the remaining data as validation data. Furthermore each Mapper gets
a R-PrismTCS implementation as a function to process the training and the valida-
tion data. The following steps describe the parallelisation of Random Prism using
Hadoop:

Step 1: Distribute the training data over the computer cluster using the
Hadoop Distributed File System (HDFS);

Step 2: Start x Mapper jobs, where x is the number of base PrismTCS
classifiers desired. Each Mapper job comprises, in the following
order:
- Build a training and validation set using Bagging;
- Generate a rulset by training the PrismTCS classifier on

the training set;
- Calculated the PrismTCS classifiers weight using the

validation set;
- Return the ruleset and the weight.

Step 3: Start the Reducer with a list of rulesets and weights produced
each each Mapper (PrismTCS classifier);

Step 4: The Reducer retuns the final classifier which is a set of PrismTCS
rulesets which perform weighted majority voting for each test
instance.



Parallel Random Prism

Fig. 4 Parallel Random Prism Architecture

4 Evaluation of Parallel Random Prism Classification

The only difference between the parallel and the serical versions of Random Prism is
that in the parallel version the R-PrismTCS classifiers are executed concurrently on
multiple processors and in the serial version they are executed sequentially. Hence
both algorithms have the same classification performance, but Parallel Random
Prism is expected to be faster. For an evaluation of the classification performance
of Random Prism the reader is referred to [26]. In this paper we evaluate Parallel
Random Prism empirically with respect to its computational performance, using the
four datasets outlined in Table 2. The datasets are referred to as tests in this paper.
The data for tests 1 to 3 is synthetic biological data taken from the infobiotics data
repository [2], and the data for test 4 is taken from the UCI repository [4]. The rea-
son for using the infobiotics repository is that it provides larger datasets compared
with the UCI repository. The computer cluster we used to evaluate Parallel Random
Prism comprised 10 workstations, each providing a CPU of 2.8 GHz speed and a
memory of 1 GB. The operating system installed on all machines is XUbuntu. In
this paper the term node or cluster node refers to a workstation and each node hosts
two Mappers. As for in the qualitative evaluation in [26], 100 base classifiers were
used.

Table 2 Evaluation datasets.
Test Test Dataset Number of Data Instances Number of Attributes Number of Classes

1 biometric data 1 50000 5 5
2 biometric data 2 15000 19 5
3 biometric data 3 30000 3 2
4 genetics 2551 59 2



Frederic Stahl, David May and Max Bramer

Parallel Random Prism has been evaluated in terms of its scalability to different
sizes of the training data in ‘size-up’ experiments described in Section 4.1, and
in term of its scalability to different numbers of computing nodes in ‘Speed-up’
experiments described in Section 4.2.

4.1 Size-up Behaviour of Parallel Random Prism

The size-up experiments of the Parallel Random Prism system examine the perfor-
mance of the system on a configuration with a fixed number of nodes/processors
and an increasing data workload. In general we hope to achieve a runtime which
is a linear function to the training data size. The two datasets with most instances,
datasets test 1 and test 3 were chosen for the size-up experiments.

Fig. 5 Size up behaviour of Parallel Random Prism on two test datasets.

For the size-up experiments we took a sample of 10000 data records from the
dataset. In order to increase the number of data records we appended the data to
itself in the vertical direction. The reason for appending the data sample to itself
is that this will not change the concept hidden in the data. If we simply sampled a
larger sample from the original data, then the concept may influence the runtime.
Thus appending the sample to itself allows us to examine Parallel Random Prism’s
performance with respect to the data size more precisely. The calculation of the
weight might be influenced by my appending the data to itself as a multiplied data
instance may appear in both the test set and the training set. However this is not
relevant to the computational performance examined here.

The linear regression equations below are corresponding to the size-up exper-
iments illustrated in Figure 5 and support a linear size up behaviour of Paral-
lel Random Prism on the two chosen datasets, where x is the number of data
records/instances in tens of thousands and y the relative runtime in seconds:

1 processor(test1) : y = 1206.8x−748.8 (R2 = 0.972)
3 processors(test1) : y = 396x−242.6 (R2 = 0.972)
5 processors(test1) : y = 226.2x−99 (R2 = 0.968)



Parallel Random Prism

10 processors(test1) : y = 128x−52.8 (R2 = 0.959)
1 processor(test3) : y = 1662.2x−1487 (R2 = 0.974)
3 processors(test3) : y = 315x−193 (R2 = 0.977)
5 processors(test3) : y = 197.3x−143.3 (R2 = 0.973)
10 processors(test3) : y = 103.7x−61.5 (R2 = 0.965)
In general we can observe a nice size-up of the system close to being linear.

4.2 Speed-up Behaviour of Parallel Random Prism

A standard metric to measure the efficiency of a parallel algorithm is the speed up
factor [17, 20]. The speed up factor measures how much using a parallel version of
an algorithm on p processors is faster than using only one processor.

Sp =
R1
Rp

In this formula Sp represents the speed up factor. R1 is the runtime of the algo-
rithm on a single machine and Rp is the runtime on p machines. The dataset size
stays constant in all processor configurations. In the ideal case the speed up factor
would be the same as the number of processors utilised. However, usually the speed
up factor will be below the ideal value due to overheads, for example due to the data
communication overhead.

Fig. 6 The Speed-up behaviour of Parallel Random Prism.

Figure 6 shows the speedup factors recorded for Parallel Random Prism on all
four test datasets for different numbers of workstations (processors) used in the clus-
ter, ranging from one workstation up to ten, the maximum number of workstations



Frederic Stahl, David May and Max Bramer

we had available for the experiments. The ideal speed-up is plotted as a dashed line.
What can be seen in Figure 6 is that the speedup for all cases is close to the ideal
case. However, there is a slightly increasing discrepancy the more workstations are
utilised. However this discrepancy can be explained by the increased communica-
tion overhead caused by adding more nodes that retrieve bagged samples from the
training data distributed in the network. There will be an upper limit of the speedup
factors beyond which adding more workstations will decrease the speedup rather
than increasing it. However considering the low discrepancy after adding 10 work-
stations suggests that we are far from reaching the maximum number of worksta-
tions that would still be beneficial. Two outliers can be identified for the speed-up
factors for the genetics dataset. In fact the speedup is better than the ideal case. Such
a ‘superlinear’ speedup can be explained by the fact that the operating system tends
to move frequent operations or frequently used data elements into the cache mem-
ory which is faster than the normal system memory. The genetics dataset has many
fewer data instances compared with the remaining datasets. Hence a plausible expla-
nation for this superlinear speedup is that distributing the bagged samples between
several workstations will result in a larger portion of the total data samples being
held in the cache memory. This benefit may outweigh the communication overhead
caused by using only two and four workstations. However adding more worksta-
tions will increase the communication overhead to a level that outweighs the benefit
of using the cache memory.

In general we can observe a nice speedup behaviour suggesting that many more
workstations could be used to scale up Parallel Random Prism further.

5 Ongoing and Future Work

The presented evaluation of the scalability of the proposed system was conducted
with respect to the number of data instances. However, in some cases the data size
might be determined by a large number of attributes, such as in gene expression data.
Hence a further set of experiments that examine Parallel Random Prism’s behaviour
with respect to a changing number of attributes is planned.

A further development of the voting strategy is currently being considered. De-
pending on the sample drawn from the training data a base classifier may predict
different classes with a different accuracy and hence a voting system that uses dif-
ferent weights for different class predictions is currently being developed. In addi-
tion to that a further version of Random Prism and thus Parallel Random Prism that
makes use of different versions of Prism as base classifier will be developed in the
future.



Parallel Random Prism

6 Conclusions

This work presents a parallel version of the Random Prism approach. Random
Prism’s classification accuracy and robustness to noise, has been evaluated in pre-
vious work and experiments and shown to improve PrismTCS’s (Random Prism’s
base classifier’s) performance. This work addresses Random Prism’s scalability to
larger datasets. Random Prism does not perform well on large datasets, just like
any ensemble classifier that uses bagging. Hence a data parallel approach that dis-
tributes the training data over a computer cluster of commodity workstations is in-
vestigated. The induction of multiple PrismTCS classifiers on the distributed train-
ing data is performed concurrently by employing Google’s Map/Reduce paradigm
and Hadoop’s Distributed File System.

The parallel version of Random Prism has been evaluated in terms of its size-up
and speed-up behaviour on several datasets. The size-up behaviour showed a desired
almost linear behaviour with respect to an increasing number of training instances.
Also the speed-up behaviour showed an almost ideal performance with respect to
an increasing number of workstations. Further experiments will be conducted in
the future examining Parallel Random Prism’s size-up and speed-up behaviour with
respect to the number of attributes. In general the proposed parallel version of Ran-
dom Prism showed excellent scalability with respect to large data volumes and the
number of workstations utilised in the computer cluster.

The future work will comprise a more sophisticated majority voting approach
taking the base classifier’s accuracy for individual classes into account and also the
integration of different ‘Prism’ base classifiers will be investigated.

Acknowledgements The research leading to these results has received funding from the Euro-
pean Commission within the Marie Curie Industry and Academia Partnerships & Pathways (IAPP)
programme under grant agreement no 251617.

References

1. Hadoop, http://hadoop.apache.org/mapreduce/ 2011.
2. Jaume Bacardit and Natalio Krasnogor. The infobiotics PSP benchmarks repository. Technical

report, 2008.
3. Justin D. Basilico, M. Arthur Munson, Tamara G. Kolda, Kevin R. Dixon, and W. Philip

Kegelmeyer. Comet: A recipe for learning and using large ensembles on massive data. CoRR,
abs/1103.2068, 2011.

4. C L Blake and C J Merz. UCI repository of machine learning databases. Technical report,
University of California, Irvine, Department of Information and Computer Sciences, 1998.

5. M A Bramer. Automatic induction of classification rules from examples using N-Prism.
In Research and Development in Intelligent Systems XVI, pages 99–121, Cambridge, 2000.
Springer-Verlag.

6. M A Bramer. An information-theoretic approach to the pre-pruning of classification rules. In
B Neumann M Musen and R Studer, editors, Intelligent Information Processing, pages 201–
212. Kluwer, 2002.



Frederic Stahl, David May and Max Bramer

7. M A Bramer. Inducer: a public domain workbench for data mining. International Journal of
Systems Science, 36(14):909–919, 2005.

8. Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
9. Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

10. J. Cendrowska. PRISM: an algorithm for inducing modular rules. International Journal of
Man-Machine Studies, 27(4):349–370, 1987.

11. Philip Chan and Salvatore J Stolfo. Experiments on multistrategy learning by meta learning. In
Proc. Second Intl. Conference on Information and Knowledge Management, pages 314–323,
1993.

12. Philip Chan and Salvatore J Stolfo. Meta-Learning for multi strategy and parallel learning.
In Proceedings. Second International Workshop on Multistrategy Learning, pages 150–165,
1993.

13. B.V. Dasarathy and B.V. Sheela. A composite classifier system design: Concepts and method-
ology. Proceedings of the IEEE, 67(5):708–713, 1979.

14. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51:107–113, January 2008.

15. Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD
’00, pages 71–80, New York, NY, USA, 2000. ACM.

16. J Fuernkranz. Integrative windowing. Journal of Artificial Intelligence Resarch, 8:129–164,
1998.

17. John L Hennessy and David A Patterson. Computer Architecture A Quantitative Approach.
Morgan Kaufmann, USA, third edition, 2003.

18. Tin Kam Ho. Random decision forests. Document Analysis and Recognition, International
Conference on, 1:278, 1995.

19. Nan-Chen Hsieh and Lun-Ping Hung. A data driven ensemble classifier for credit scoring
analysis. Expert Systems with Applications, 37(1):534 – 545, 2010.

20. Kai Hwang and Fay A Briggs. Computer Architecture and Parallel Processing. McGraw-Hill
Book Co., international edition, 1987.

21. Biswanath Panda, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo. Planet: massively
parallel learning of tree ensembles with mapreduce. Proc. VLDB Endow., 2:1426–1437, Au-
gust 2009.

22. Ross J Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
23. Ross J Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993.
24. Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33:1–39, 2010.
25. F. Stahl, M.M. Gaber, M. Bramer, and P.S. Yu. Pocket data mining: Towards collaborative

data mining in mobile computing environments. In 22nd IEEE International Conference on
Tools with Artificial Intelligence (ICTAI), volume 2, pages 323 –330, October 2010.

26. Frederic Stahl and Max Bramer. Random Prism: An alternative to random forests. In Thirty-
first SGAI International Conference on Artificial Intelligence, pages 5–18, Cambridge, Eng-
land, 2011.

27. Frederic Stahl, Mohamed Gaber, Paul Aldridge, David May, Han Liu, Max Bramer, and Philip
Yu. Homogeneous and heterogeneous distributed classification for pocket data mining. In
Transactions on Large-Scale Data- and Knowledge-Centered Systems V, volume 7100 of Lec-
ture Notes in Computer Science, pages 183–205. Springer Berlin / Heidelberg, 2012.

28. Ian H Witten and Frank Eibe. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, second edition, 2005.

29. Gongqing Wu, Haiguang Li, Xuegang Hu, Yuanjun Bi, Jing Zhang, and Xindong Wu.
Mrec4.5: C4.5 ensemble classification with mapreduce. In ChinaGrid Annual Conference,
2009. ChinaGrid ’09. Fourth, pages 249 –255, 2009.

30. Jiang Wu, Meng-Long Li, Le-Zheng Yu, and Chao Wang. An ensemble classifier of sup-
port vector machines used to predict protein structural classes by fusing auto covariance and
pseudo-amino acid composition. The Protein Journal, 29:62–67, 2010.


