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Abstract—Pocket Data Mining PDM is our new term de-
scribing collaborative mining of streaming data in mobile and
distributed computing environments. With sheer amounts of
data streams are now available for subscription on our smart
mobile phones, the potential of using this data for decision
making using data stream mining techniques has now been
achievable owing to the increasing power of these handheld
devices. Wireless communication among these devices using
Bluetooth and WiFi technologies has opened the door wide for
collaborative mining among the mobile devices within the same
range that are running data mining techniques targeting the
same application. This paper proposes a new architecture that
we have prototyped for realizing the significant applications in
this area. We have proposed using mobile software agents in this
application for several reasons. Most importantly the autonomic
intelligent behaviour of the agent technology has been the driving
force for using it in this application. Other efficiency reasons are
discussed in details in this paper. Experimental results showing
the feasibility of the proposed architecture are presented and
discussed.

I. INTRODUCTION

With the continuous advances in handheld mobile devices
including smart phones, PDAs (Personal Digital Assistants)
and smart sensors, there is an unpreceded opportunity to
perform significantly useful data analysis tasks in an ad hoc
computing environment. This can be realized with the help of
several established areas of study including: (a) data stream
mining [3]; (b) mobile software agents [22], [18]; and (c)
embedded programming.

A typical scenario for this ad hoc data analysis would
include number computationally capable devices like smart
phones and sensors, and number of applications that run
onboard these devices. An agent platform like the Java Agent
DEvelopment Framework JADE [2] would be running on all
the devices. A computational task would be initiated by one
of these devices firing a number of mobile software agents
roaming an ad hoc formed network. The agents would discover
the data sources, the computational capabilities of the devices
that formed the network and the available applications onboard
these devices. The agents in turn would take a collective
decision on the distribution of the processing subtasks to
perform the initiated task according to several criteria like
proximity to the source of data, the available applications to

perform the process, etc.
This generic scenario, when applied to collaborative data

mining, would include mobile software agents of different
types. These types could be identified as follows:

• (Mobile) agent miners (AM): these agents are either
distributed over the network when the mining task is
initiated or are already located on the mobile device.

• Mobile agent resource discoverers (MRD): these agents
are used to explore the available computational resources,
processing techniques, and data sources.

• Mobile agent decision makers (MADM): these agents
roam the network consulting the mobile agent miners to
collaborate in reaching the final decision.

Our proposed PDM framework in this paper makes use
of the above types of agents. Details of the roles of the
different agents will be discussed in details when discussing
the system architecture in Section III. The primary motive
for developing this framework is to enable seamless collabo-
ration among users of mobile data mining applications. Two
constraints necessitate the distribution of the task resulting in
a collaborative environment. First, the large amounts of data
that challenge the state-of-the-art of our smart phones and
embedded devices. Second, subscription fees that apply for
this data to be streamed to the user’s mobile device. Thus,
collaborative mining addresses these constraints realising the
potential of this important application.

Two stimulating factors have motivated us to use the mobile
software technology in this application. The first is the au-
tonomous behaviour that the agent framework supports. This
is important to cope with the dynamic nature of the application
of varying number of nodes and the data mining algorithms
used. Communication efficiency as reported in [21], [16] of
using mobile software agents in distributed data mining has
been the second factor.

The paper is organized as follows. Section II discusses
related work in the mobile data mining area. Our PDM
architecture and its components are thoroughly discussed in
Section III. Experimental results that prove the feasibility of
the architecture are presented in Section IV. Finally, the paper
is concluded in Section V.



II. RELATED WORK

Related work in this area includes systems developed by
Kargupta el al in [15], [20], [17], [13], [1] for mobile data
mining for mobile brokering and road safety, and by Pirttikan-
gas et al [19] for context-aware health club. Brief descriptions
of these systems will follow.

Kargupta et al [15], [20], [17] have developed the first
ubiquitous data stream mining system termed MobiMine. It is
a client/server PDA-based distributed data mining application
for financial data streams. The system prototype has been
developed using a single data source and multiple mobile
clients; however the system is designed to handle multiple data
sources. The server functionalities in the proposed system are
data collection from different financial web sites and storage,
selection of active stocks using common statistics methods,
and applying online data mining techniques to the stock data.
The client functionalities are portfolio management using a
mobile micro-database to store portfolio data and information
about user’s preferences, and construction of the WatchList
and this is the first point of interaction between the client
and the server. The server computes the most active stocks
in the market, and the client in turn selects a subset of
this list to construct the personalized WatchList according
to an optimisation module. The second point of interaction
between the client and the server is that the server performs
online data mining and then transforms the results using
Fourier transformation and finally sends this to the client. The
client in turn visualises the results on the PDA screen. It is
worth pointing out that the data mining process in MobiMine
has been performed at the server side given the resource
constraints of a mobile device.

With the increase need for onboard data mining in resource-
constrained computing environments, Kargupta et al [13] have
developed Vehicle Data Stream Mining System (VEDAS). It is
a ubiquitous data stream mining system that allows continuous
monitoring and pattern extraction from data streams generated
on-board a moving vehicle. The mining component is located
on the PDA. VEDAS uses online incremental clustering for
modeling of driving behaviour. A commercial version of
VEDAS termed as MineFleet has been successfully deployed
[14], [1].

Pirttikangas et al [19] have implemented a mobile agent-
based ubiquitous data mining for a context-aware health club
for cyclists. The system is called Genie of the Net. The process
starts by collecting information from sensors and databases
in order to recognize the needed information for the specific
application. This information includes user’s context and other
needed information collected by mobile agents. The main
scenario for the health club system is that the user has a
plan for an exercise. All the needed information about the
health such as heart rate is recorded during the exercise. This
information is analysed using data mining techniques to advise
the user after each exercise.

Other related work includes the large body of data stream
mining algorithms. Key techniques and approaches in the area

are discussed in [3] and more recently in the tutorial presented
by Gama et al in [9].

Addressing the resource constraints of small computational
devices like smart phones and Personal Digital Assistants
PDAs has been reported in work conducted by Gaber el al in
[4], [6], [5], [7]. The approach taken in this body of work has
been termed as Granularity-based approach. It adapts the data
mining algorithm to adjust the resource consumption pattern
according to availability of resources. Notably, successful
applications of the approach in road safety and healthcare have
been reported in [10], [11], [12].

III. PDM ARCHITECTURE

The architecture of our PDM framework is illustrated in
Figure 1. From this point onwards in the paper, we shall use
the terms PDM architecture and PDM framework interchange-
ably. As the figure shows, the data stream mining process runs
onboard the users’ smart mobile phones. As the data streams
in, the model is continuously updated to cope with the possible
concept drift of the streaming environments. The process of
stream mining is carried out using an Agent Miner, denoted
as AM. AMs are distributed at the beginning of initiating the
mining task. Some of these miners could be stationary and
some others could be mobile. Stationary agents are instructed
by the task initiator to mine the streaming data to the mobile
device without making any hops. However, the mobile agents
could travel to one or more nodes in order to perform the
mining task. The choice of using stationary or mobile agent
relies on the nature of the task and the number of nodes
involved in the processing. Typically, AMs are data stream
classification techniques. But the use of other techniques is
also possible according to the required task.

If at any point in time, a user decides to use the models
built using the different AMs on all the mobile phones to
collaborate in finding the class label of a set of unlabeled
instances, a Mobile Agent Decision Maker MADM is fired to
visit the nodes consulting the models about the local class
label. While these agents are visiting the different nodes, it
may decide to terminate its itinerary given that clearly there
is a dominant class. This clearly makes the agent framework
the suitable technology for this task.

A simple flow chart of the process of collaborative data
mining using our PDM architecture is given in Figure 2.

Our PDM framework raises a number of research issues
that are important to be addressed to optimise the task. These
issues are currently being investigated by our research team.
The following is a list of these issues.

• The number of AMs that are decided by the task initiator.
In an ad hoc environment, the number of participants
may vary. Thus, it is important to involve the number of
AMs that cover the largest number of attributes and data
instances. For example, if the number of mobile phones in
a setting is 5, and 2 of these share the same instances and
attributes and run the same data mining technique, only
one of the two would be chosen for the task depending on



Fig. 1. PDM Architecture

other factors like computational resources and proximity
to the data source.

• The number of MADMs that are decided by a participant.
This is done when that participant is ready to use the
output of the stream mining process for decision mak-
ing. This number relies on the number of participants.
Although it would be faster to fire a number of MADMs
that is equivalent to the number of participants, this could
be a burden on the communication network if the number
of participants is large. Also, the decision relies on the
different data mining techniques that run concurrently. If
using a particular model is known to take longer time due
to the structure the technique produces (rules, trees, etc.),
another agent could visit two different nodes while one
agent is consulting the loner running time node. Thus, an
optimum number of MADMs has to be decided.

• The combination of data mining techniques to be used is
essential to ensure that the built models are of optimum
accuracy. Once the mobile agent resource discoverers
MRDs have found out the different techniques and the
data sources in the network, stream mining techniques
that will be used are decided. This is done according
to the request made by the task initiator. For example,
if a classification task is initiated and some nodes host
more than one classification technique, it is important to
decide whether the node runs the two techniques on the
same streaming data, or runs one of them according to
availability of resources and importance of the attributes
in the decision making. It is also essential to decide
whether these techniques would be stationary or mobile.
If the mobility of agents is decided, it is important to
decide the timing of the migration from one node to the
other.

• The combination of attributes and data instances that is
used as input to the data mining algorithm. This decision
relies on what has been discovered by the mobile agent

Fig. 2. A Flow Chart of the Collaborative Data Mining Process

resource discoverers. If some attributes and instances are
shared among classifiers, it is important to decide whether
to use the shared attributes and instances by two or more
different classifiers, or use disjoint subsets of the data to
accelerate to the process.

• The decision on whether each node is required to adapt
to resource availability is important. Some nodes would
be in a better position to cope with high speed streaming
data due to its high performance computational power.
However, some other would need to adapt. As previously
mentioned in Section II, the Granularity-based approach
developed by Gaber et al [4], [6], [5] is able to adjust the
algorithm settings in real-time to change the consumption
pattern of the algorithm to cope with low availability



of resources. The decision of using one or more of the
algorithm granularity settings will be taken in the light
of the running techniques and the configuration of the
mobile phone.

This paper addresses the first couple of issues listed above
which are discussed in more detail and in terms of com-
putational efficiency in Section IV. The rest of the issues
are the subject to our currently undertaken investigations and
experimental study.

IV. EVALUATION OF THE PDM FRAMEWORK

A prototype of the PDM framework as described in Section
III has been implemented and empirically evaluated in a LAN.
For the implementation the well known JADE framework has
been used [2], with the reasoning that there exist a version of
JADE, JADE-LEAP (Java Agent Development Environment-
Lightweight Extensible Agent Platform), that is designed for
the implementation of agents on mobile devices and can be
retrieved from the JADE project website as an ‘add on’ [23].
As JADE works on standard PCs as well as on mobile devices
it was possible to develop and test the first prototype of the
PDM framework on the LAN described below. The LAN
consisted of four computers interconnected with a network
switch. Three of the computers (computers A, B and C) have
a CUP with a 2.8 GHz clock-speed and 1 GB of memory,
the fourth computer (computers D) has a CPU with 2.20 GHz
clock-speed and 500 MB of memory. The switch used is a
standard CISCO Systems switch of the catalyst 2950 series.
Computer D was used as the base from which all MADMs
were started from. Computers A, B and C were hosting
AMs that actually implement the data mining algorithms.
Computers A, B and C where hosting more than just one AM
in order to simulate more nodes in the network than actual
computers were available. In order to have a realistic scenario
the MADMs were not permitted to visit two consecutively
AMs located on the same machine. One constraint in this
setup is that it may happen that two or more MADMs visit
different AMs hosted on the same computer at the same
time. That makes it more likely that there are collisions in
the network, which would not be the case if all AMs were
hosted on separate computers. So the performance of the PDM
framework in the current setup will be worse compared with
a setup with one physical computer per AM, like it would be
in a real application of the PDM framework.

Figure 3 illustrates the GUI of an MADM which is dis-
played at the start of the MADM. The text field ”Test Instance”
takes a data instance to be test for a classification, the values
are entered separated by a comma. Further information that the
MADM needs in order to calculate the order in which AMs are
visited, is the total number of AMs or ”stream mining agents
available” in the LAN, the number of AMs per machine, the
number or ID if this particular MADM and the number of
AMs this MADM shall visit. As mentioned before the order
of the agents to visit is relevant for this evaluation as several
AMs may be hosted on the same computer and an MADM
should not visit consecutively AMs that are hosted on the same

computer. In a real application only the test instance would be
required as a input parameter. The information that the GUI
requests would normally be collected from the MRD agent,
which has not been implemented yet.

Fig. 3. GUI of an MADM.

Figures 4, 5, 6, and 7 show screenshots of the JADE agents
running on computers A, B, and C. While computers A, B, and
C are running the data stream classification process, another
computer fires an MADM to consult the three aforementioned
computers. This is shown in the screenshots depicted in figures
4, 5, and 6. Figure 7 shows that MADM bob1 has been
initiated by computer D and started its itinerary by visiting
Container-1, which corresponds to computer A. It also shows
that after bob1 finished its itinerary by visiting all the three
computers, it is now in a position to take a decision depending
on the accumulated results. Note that symbols A, B, and C in
Figure 7 refer to the inferred class labels and not the computers
that were running the classification process. It is also worth
noting that it is just a coincidence to have each computer
produces a different label.

Fig. 4. A Screenshot of Computer A.



Fig. 5. A Screenshot of Computer B.

Fig. 6. A Screenshot of Computer C.

The purpose of this section is to evaluate the feasibility
of the PDM framework in computational terms, in particular
the communication performance and its parallel processing
performance. With respect to the communication performance,
the property of interest is the time needed for the MADMs to
visit all the AMs and return to computer D. With respect to
the parallel performance the property of interest is how much
faster the PMD framework becomes the more MADMs are
used.

A. Evaluation of the Communication Performance

In order to evaluate the communication performance the
actual data mining algorithms of the AMs were replaced by
a random result generator. Assuming a classification task,
the result produced by each AM would consist of the class
label and a weight to indicate how reliable or important the
classification produced by this particular AM is. The random

Fig. 7. A Screenshot of Computer D.

result generator simply generates a random class label and a
random weight. The reason for doing this is that generating
a random result consumes only a very little amount of CPU
time compared with a actual classification algorithm. In order
to measure how quickly an MADM visits all the nodes it is
important to bring the execution time of the AM visited to a
minimum.

Figure 8 depicts the time needed by one or more MADMs to
visit all AMs in the network on several network configurations
(different numbers of AMs). What can be seen is that the
time needed for communication is decreasing at a high rate at
the beginning for using more MADMs. The rate of decrease
levels off very quickly and the time needed for communication
seems to increase slightly for larger numbers of MADMs. The
decrease of communication time with only a few MADMs
can be explained by the fact that several MADMs perform
their hops in parallel and the more MADMs are used the less
”hops” each MADM has to perform. However the benefit of
using more MADMs is contradicted by the fact that the more
MADMS are used the higher the traffic on the network and
thus the risk of collisions. Regarding that the risk of collisions
is increased by the experimental setup itself, as mentioned
earlier in this Section, in particular by hosting several AMs on
the same computers, it is likely that the communication time
would still decrease for a larger number of MADMs if there
would be more computers available for the experimental setup.
Nevertheless it can be seen that the communication overhead
using one ore more MADMs is very low in general.

B. Evaluation of the Parallel Performance using Speedup
Factors

One may say that regarding low communication overhead
it not necessary to use more than one or two MADMs.
However taking into consideration that the actual data mining
algorithms embedded in the AMs will consume CPU time
draws a different picture. If an MADM visits a AM it waits



Fig. 8. Time consumed by the MADMs to visit all AMs

until the AM has derived a result and then the MADM will
visit the next AM. So the more MADMs are used the more
AMs can be visited by different MADMs and are executed in
parallel (at the same time) and thus reduce the overall runtime.

In order to evaluate this parallel behaviour all AMs have
been forced to wait a period amount of time in order to
simulate the execution time of their local data mining algo-
rithm. The simulated execution time of the AMs is a random
number between 5 to 30 seconds. For the experiments in this
Section 120 MAs have been set up evenly distributed between
computers A, B and C so each computer hosting 40 AMs. A
concrete implementation of the PDM framework using KNN
and has been implemented, however the reason for using a
random time generator rather than the actual algorithms lies
if the limited amount computer hardware available for these
experiments. If two AMs or more AMs are hosted on the
same machine and two or more AMs are visited by different
MADMs at the same time then they would technically be
executed in a serial fashion rather than in parallel. However
if the system time of the actual computer is used to make
the AMs waiting, then the waiting literally happens in parallel
if the concerning AMs are executed on the same computer
at the same time. Hence using a random number to simulate
the runtime of the AMs draws a more realistic picture for the
experiments described in this Section.

The experiments conducted in this Section are speedup
experiments. The number of work is kept constant at 120 AMs
while the number of MADMs and thus the number of CPUs
used to execute the AMs is increased step by step.

It is expected that the larger number of MADMs the shorter
execution time of the PDM framework as more AMs are
consulted in parallel (at the same time).

Figure 9 depicts the runtimes of the PDM framework using
120 AMs and from 1 up to 60 MADMs. What can be seen is
that the more MADMs are used the shorter the execution time
of the framework. However what can also be seen is that the
larger the amount of MADMs the less the framework benefits
from each individual MADM. This loss of performance can
be explained by the fact that different algorithms consume
different amount of time, which leads to that some MADMs

Fig. 9. Runtime of the PDM framework on a set up with 120 AMs and a
variable number of MADMs

are finished earlier in visiting their allocation of AM than
others. Also the larger the number of MADMs the larger the
communication overhead. Furthermore the more MADMs are
used the more time is needed to combine the by the MADMs
collected results. At the moment the combining of classifi-
cation results is a simple weighted majority voting, however
different data mining tasks may require different combining
strategies which can be implemented in the MADMs. The fact
that MADMs finish visiting their allocation of AMs at different
times could be avoided by a more dynamic allocation of AMs
to each MADM. For example once an MADM that finishes
could take over some of the allocated AMs of a different
MADM. This may well lower the communication overhead.

Two standard metrics to evaluate a parallel algorithms or
architectures like the PDM framework are the speedup factors
and the efficiency [24], [25]. They are a convenient way of
looking at the overheads mentioned observed in figure 5. The
speedup factor Sp is the runtime R1 of the PDM framework
using one MADM divided by the runtime Rp using p MADMs
as shown in formula (1) .

Sp =
R1

Rp
(1)

With the speedup factor it is possible to compare how much
a parallel version of a system is faster using p computational
nodes with one. p in this case is the number of MADMs. In
the ideal case the Sp is equal to the number of MADMs. For
example if two instead of one MADMs are used then the ideal
Sp would be 2, or loosely speaking, using twice the number of
MADMs makes the PDM framework twice as fast. The actual
speedup factors based on the results depicted in Figure 9 are
shown in Figure 10.

The speedup factors in Figure 10 show that even 60 AMs
still have a positive impact. However the ideal speedup for
60 MAs would be 60 and is in fact 38, which reflects the
communication overhead observed earlier.

A different way of looking at the speedup factors is the
efficiency. The efficiency in formula (2) shows how much
speedup is achieved per computational node and in the case of
the PMD framework this is how much speedup is achieved per



Fig. 10. Speeup factors obtained using the PDM framework with 120 AMs

Fig. 11. The Efficiencies obtained using the PDM framework with 120 AMs

MADM. It is the percentage with which the PDM framework
profits from each MADM and is caculated by dividing the
speedup factors by the number of computational nodes or in
our case all MADMs:

Ep =
Sp

p
(2)

The efficiencies of the PDM framework are illustrated in
Figure 11 and are decreasing the more MADMs are used,
which is a normal and expected behaviour caused by the same
overheads as stated for the speedup factors. However for using
two MADMs the efficiency unexpectedly increases slightly,
which is most likely a outlier as for using further MADMs
the the efficiencies always decrease. In general what can be
seen is that the PDM framework is scaling nicely with respect
to the number of MADMs used.

V. CONCLUSION

The paper introduced our Pocket Data Mining framework
to enable collaborative mining of streaming data in mobile
environments. The framework uses the mobile software agents
technology benefiting from its autonomous behaviour and
computational efficiency. Experimental results using JADE
toolkit have proved the applicability of the system.

Future directions in our research would explore the nu-
merous alternatives of collaborative mining techniques and
strategies. These include varying the mining techniques, the
sharing of attributes and instances of the data among nodes,
and the distribution of the roles among agents that would yield
the highest accuracy.
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