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Abstract. In a world where massive amounts of data are recorded on a large 
scale we need data mining technologies to gain knowledge from the data in a 
reasonable time. The Top Down Induction of Decision Trees (TDIDT) 
algorithm is a very widely used technology to predict the classification of newly 
recorded data. However alternative technologies have been derived that often 
produce better rules but do not scale well on large datasets. Such an alternative 
to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on 
noisy data but does not scale well on large datasets. In this paper we introduce 
Prism and investigate its scaling behaviour. We describe how we improved the 
scalability of the serial version of Prism and investigate its limitations. We then 
describe our work to overcome these limitations by developing a framework to 
parallelise algorithms of the Prism family and similar algorithms. We also 
present the scale up results of a first prototype implementation. 

1. Introduction 
The growing interest and importance of commercial knowledge discovery and data 

mining techniques has led to a growing interest in the area of classification rule 
induction from data samples to enable the classification of previously unseen data. 
Research in classification rule induction can be traced back at least to the 1960s [1].A 
very widely used method to induce classification rules is TDIDT [2] which has given 
rise to a variety of implementations such as C5.0. However alternative algorithms 
exist such as the Prism algorithm [3]. Prism produces more generalised rules than 
TDIDT and thus tends to perform better on noisy datasets. As a result Prism has been 
used in areas where datasets are naturally noisy such as image recognition [4] or text 
classification. Prism is also the base for further data mining algorithms such as 
PrismTCS [5], N-Prism [6]. A free implementation of Prism can be found in the 
WEKA package [7] and also in the Inducer workbench[8]. The increase in 
performance of computer hardware such as CPU power and disc storage and sensors 
to record data such as CCTV cameras enables companies and researchers to generate 
and store larger and larger datasets to which they still wish to apply classification rule 
induction algorithms. This has led to the exploration of a new niche in data mining, 
parallel and distributed data mining. So far, work on distributed and parallel 
classification rule induction has been focused on the well-established TDIDT 
approach. Notable developments are the SLIQ [9] and its successor the SPRINT [10] 
algorithm. The latter achieves an almost linear scale up with respect to the number of 
CPUs and the sample size. However, very little work has been done on scaling up 
alternative algorithms such as Prism. One approach to scaling a data mining algorithm 



is to sample the data before the algorithm is applied. Catlett’s work [11] showed that 
sampling of data results in a loss of accuracy in the induced classifier. However 
Catlett’s research was conducted 17 years ago and the datasets he used were fairly 
small compared with those used today. Frey and Fisher found in 1999 that the rate of 
increase of accuracy slows down with the increase of the sample size [12]. This 
resulted in seeking optimized methods for sampling massive datasets such as 
progressive sampling [13]. Whereas sampling might be an option for predictive 
modelling, scaling up data mining algorithms is still desirable in applications that are 
concerned with the discovery of new knowledge. Chan and Stolfo considered a way to 
scale up classification rule induction by dividing the data into subsets that fit in a 
single computer's memory and then generating a classifier on each data subset in 
parallel on several machines[14, 15]. The different classifiers generated are then 
combined by using various algorithms in order to achieve a final classifier. Despite the 
significant reduction of run times of the classification rule induction process, Chan 
and Stolfo's studies also showed that this approach does not achieve the accuracy of a 
single classifier induced on the same training data. In order to meet the need for a well 
scaling, more generalised and thus noise tolerant classifier, we investigate and 
improve PrismTCS’s scaling behaviour and derive a parallel approach to inducing 
classification rules in parallel for algorithms based on the Prism family. We present a 
framework that induces modular classification rules in parallel based on the PrismTCS 
algorithm and evaluate its scaling behaviour. 

2. Inducing Modular Classification Rules 
The main drawback of the TDIDT approach, also often called the divide and 

conquer approach, lies in the intermediate representation of its classification rules in 
the form of a decision tree. Rules such as: 

IF a = 1 AND b = 1 THEN class = 1 
    IF c = 1 AND d = 1 THEN class = 0 

which have no attribute in common, could not be induced directly using the TDIDT 
approach. In such cases, TDIDT will first need to introduce additional tests that are 
logically redundant simply to force the rules into a form suitable for combining into a 
tree structure. This will inevitably lead to unnecessarily large and confusing decision 
trees.Cendrowska designed the original Prism algorithm to induce directly sets of 
'modular' rules that generally will not fit conveniently into a tree structure, thus 
avoiding the redundant terms that result when using the TDIDT approach. Prism 
generally induces rule sets that tend to overfit less compared with TDIDT, especially 
if it is applied to noisy datasets or datasets with missing values [6]. Cendrowska's 
Prism algorithm follows the separate-and-conquer approach which learns a rule that 
explains a certain part of the training data. It then separates the data explained by the 
rule induced and induces the next rule using the remaining data. Thus it recursively 
“conquers” until no training data is left. This strategy can be traced back to the AQ 
learning system [16]. The basic separate and conquer algorithm can be described as 
follows: 



Rule_Set = []; 
While Stopping Criterion not satisfied{ 
    Rule = Learn_Rule; 
    Remove all data instances covered from Rule; 
} 

The algorithm specific procedure Learn_Rule learns the best rule for the current 
training data subset. After each induced rule all data instances that are not covered are 
deleted and the next rule is learned from the remaining data instances. This is done 
until a Stopping Criterion is fulfilled. Also the Stopping Criterion is an algorithm 
specific one that differs from algorithm to algorithm. PrismTCS (Prism with Target 
Class, Smallest first) a version of Prism that attempts to scale up Prism to larger 
datasets has been developed by one of the present authors [5]. Whereas in PrismTCS 
the separate-and-conquer approach is applied only once, in the original Prism 
algorithm it is applied for each class in turn. PrismTCS has a comparable predictive 
accuracy to that of Prism [5]. 

Our implementation of PrismTCS for continuous data only is summarised in the 
following pseudo code: 
 
(a) working dataset W = restore Dataset; 
    delete all records that match the rules that have  
    been derived so far and select the ; 
    target class i = class that covers the fewest  
    instances in W; 
(b) For each attribute A in W 
        - sort the data according to A; 
    - for each possible split value v of attribute A 
      calculate the probability that the class is i 
      for both subsets A < v and A � v; 
(c) Select the attribute that has the subset S with  
    the overall highest probability; 
(d) build a rule term describing S; 
(e) W = S; 
(f) Repeat b to e until the dataset contains only  
    records of class i. The induced rule is then  
    the conjunction of all the rule terms built at  
    step d; 
(g) restore Dataset = restore Dataset – W; 
    Repeat a to f until W only contains instances of     
    class i or is empty; 

The following approaches and the parallel classification rule induction algorithm 
presented in this paper are explained in the context of PrismTCS. However, our 
approaches can be applied to Prism and all its descendants analogously. 

2.1 Speeding up PrismTCS 

We identified two major overheads in Prism and PrismTCS that lower its 
computational efficiency considerably. The overheads comprise sorting for continuous 



attributes in step b of the algorithm and the frequent deletion of data instances and 
resetting of the training dataset in step a, e and g of the algorithm. With respect to the 
sorting overhead we removed the innermost loop of sorting in step b by employing a 
pre-sorting strategy. The training dataset is pre-sorted by building attribute lists of the 
structure <record id, attribute value, class value> similar to the SPRINT algorithm 
[10, 17]. These attribute lists can be sorted before the first iteration of the Prism 
algorithm and remain sorted during the whole duration of the algorithm. With respect 
to frequent restoring of the training dataset an efficient data compression algorithm 
has been developed. When we talk about compression we mean an efficient way to 
delete and restore instances of the training dataset, while maintaining the sorted nature 
of the attributes, which is needed frequently in the algorithms of the Prism family. For 
example regarding the PrismTCS pseudo code, data instances are deleted in step e and 
g and restored in step a. The challenge here is to find a way of data efficient 
compression that takes account of the pre-sorted attribute lists. One way to implement 
this would be to keep two copies of each attribute list in memory, one list for resetting 
purposes and one list to work with, analogously to the “working dataset W” and the  
“restore Dataset” in the PrismTCS pseudo code in section 2. Attribute lists would be 
restored by replacing the working set of lists with a restore set of lists. However this 
approach involves a considerable overhead of memory usage by keeping two copies of 
the whole training dataset in the form of attribute lists in memory. A further overhead 
in processing time is caused by frequently creating deep copies of attribute list 
records. 

We derived a more memory and time efficient algorithm for deleting and restoring 
data which involves having the dataset only stored once in the memory. We do that by 
only working with the record ids of each attribute list record which are stored in an 
integer array. This array is used to reference attribute values and class values which 
are stored in separate double precision and character arrays. Thus when pre-sorting 
the attribute list we only need to sort the integer array with record ids. Also when 
deleting list records we only need to delete the references in the record ids array. Thus 
the attribute values array and class values array are left untouched during the whole 
duration of the Prism algorithm. However we also need to avoid expensive resizing of 
the record ids array due to deletion and resetting of ids. We do that by replacing ids 
that need to be deleted in the array by the next id that does not need to be deleted and 
thus the size of the actual array stays the same. If the number of ids that are not 
deleted is n then PrismTCS will only take record ids stored between indices 0 and n-1 
into account and ignore the rest. Thus PrismTCS is required to update n whenever ids 
are deleted or reset. 

 The pseudo code below shows the basic compression algorithm: 
 
int numbRelevant;// number of relevant ids in the array 
boolean[] remove;// each index in the array corresponds            
                 //to a actual id value that needs to be  
                 //deleted 
removal(numbRelevant, remove){ 
 int i,j; 
 j = 0; 



 FOR(i=0; i<numRelevant; i++){ 
    IF(remove[i]){ 
      recordIdsArray[j] = recordIdsArray[i] 
      j++; 
    } 
  } 
  numRelevant = j; 
} 

This algorithm is implemented in steps e and g of the PrismTCS pseudo code. We 
implemented three versions of PrismTCS, the original algorithm, as described in 
section 2, PrismTCS with attribute lists and PrismTCS with attribute lists and data 
compression.  

There are three general factors that determine the time taken to process a dataset 
using PrismTCS or any other algorithm that generates a model from data: 
 
(1) the volume of data (number of instances and attributes) 
(2) the attribute types (continuous attributes generally take much longer to process  
     than categorical ones)  
(3) the complexity of the model produced in the chosen representation (in the case of  
     PrismTCS this is the number of Disjunctive Normal Form rules and the number  
     of  terms they comprise). 
 

The complexity of the model can vary considerably from one dataset to another, 
depending on the appropriateness of the chosen representation for representing the 
underlying causality of the domain. Although in the case of PrismTCS large datasets 
tend to lead to larger rulesets this is not necessarily or always the case. It is entirely 
possible for a very large dataset to be modelled by a small number of rules or (in an 
extreme case) for a small dataset to require as many rules as there are instances. It 
depends on the suitability of the representation. In all our experiments we have fixed 
factors (2) and (3) to enable us to focus on the effect of factor (1). All the attributes 
are continuous and all the rulesets derived from the yeast dataset from the UCI 
repository [18] lead to precisely the same model being output. We increased the size 
of the yeast data by appending it to itself, thus ranging from 1,500 up to 23,000 data 
instances, where each instance comprises 8 attributes. As illustrated in figure 1, pre-
sorting has a positive impact on the scaling behaviour of PrismTCS, However both 
PrismTCS with and without pre-sorting are scaling with second order polynomial 
behaviour. On the other hand PrismTCS with pre-sorting and our data compression 
strategy scales up with a linear behaviour.  

 



 

Fig. 1. Scale up of PrismTCS. 

We were able to scale up our version of PrismTCS to a far larger number of 
attributes and data instances as shown in section 4. The following regression equations 
represent the scale ups of all three versions of PrismTCS where x is the number of 
training instances and y is the runtime in ms: 

PrismTCS:           y = 0.002x2 + 9.036x  (R² = 1) 
PrismTCS(sort):        y = 0.002x2 + 1.158x  (R² = 1) 
PrismTCS(sort&compress):  y = 3.620x  (R² = 0.998) 

3. PMCRI: A Parallel Modular Classification Rule Induction 
Framework 

There have been several attempts to scale up classification rule induction via 
parallelisation. In the area of TDIDT we have already mentioned the SPRINT [10] 
algorithm. We can distinguish two types of parallel processing in data mining: fine 
grained parallelisation and loosely coupled distributed data mining [19]. Whereas fine 
grained parallelisation makes use of “shared memory multiprocessor” machines 
(SMP),  loosely coupled distributed data mining makes use of “shared nothing” or 
“massively parallel processors” (MPP) [20]. We will focus here on parallelising 
modular classification rule induction using an MPP approach. Our reasoning is that 
MPP can be represented by a network of workstations and thus is a cheap way of 
running parallel algorithms for organisations with limited budgets. We want to use an 
MPP infrastructure to parallelise the modular classification rule induction of Prism by 
using the Cooperating Data mining Model (CDM) [19]. The CDM model is illustrated 
in figure 2. It is partitioned into different sections which we call layers. In the first 
layer of the CDM model is the sample selection procedure which partitions the data 
sample S into n sub samples where n is the number of workstations available. There 
are n Learning algorithms L1,…,Ln in the second layer that run on the corresponding 
subsets and generate concept descriptions. C1, …. Cn. In the third layer these concept 
descriptions are then merged by a combining procedure to a final concept description 
Cfinal. The final concept description in the case of classification rule induction would 
be a set of classification rules. 



 

Fig. 2. Cooperating Data Mining. 

We developed a parallel modular classification rule induction framework for the 
Prism family and tested it on PrismTCS, the PMCRI (Parallel Modular Classification 
Rule Induction) framework [21], which applies to the CDM model. Parallelisation in 
the first layer is achieved by distributing all attribute lists evenly over n processors and 
processing them locally by algorithms L1 to Ln, which induce rule terms. To 
implement the second layer in the CDM model we used a distributed blackboard 
system architecture based on the DARBS distributed blackboard system [22].  

 

Fig. 3. The architecture of the PMCRI framework using a distributed blackboard 
system in order to parallelise the induction of modular rule terms. It is divided into two 
logical partitions: one to submit local rule term information and one to retrieve global 
information about the algorithm’s status. 

A blackboard system can be imagined as a physical blackboard which is observed 
by several experts with different knowledge domains, having a common problem to 



solve. Each expert will use its knowledge domain plus knowledge written on the 
blackboard in order to infer new knowledge about the problem and advertise it to the 
other experts by writing it on the blackboard. In the software model such a blackboard 
system can be represented by a client server architecture. Figure 3 shows the basic 
communication pattern of PMCRI. The expertise of each expert machine is 
determined by the attribute lists it holds. Thus loosely speaking, each expert can 
induce the “locally best rule term”. The experts then use then the “Local Rule Term 
Partition” on the blackboard to exchange information in order to find the “globally 
best rule term”. The winning expert then will communicate the ids of the instances that 
are uncovered by this rule term to the other waiting experts using the “Global 
Information Partition”  on the blackboard system. Now the next rule term can be 
induced in the same way. In PMCRI the attribute lists decrease in size at the same 
rate, thus the workload on each expert machine stays in the same proportion for all 
remaining experts. 

The following steps describe how PMCRI induces one rule in the context of 
PrismTCS[23]: 

Step 1 Moderator (PrismTCS) writes on “Global 
Information Partition” the command to induce locally 
best rule terms. 
 

Step 2 All Experts induce the locally best rule term and 
write the rule terms plus its covering probability 
and the number of list records covered on the “local 
Rule Term Partition” 

Step 3 Moderator (PrismTCS) compares all rule terms 
written on the “Local Rule Term Partition”; adds 
best term to the current rule; writes the name of 
the Expert that induced the best rule term on the 
Global Information Partition 

Step 4 Expert retrieves name of winning expert. 
IF Expert is winning expert {  
   derive by last induced rule term uncovered ids      
   and write them on the “Global Information  
   Partition” and delete uncovered list records 
} 
ELSE IF Expert is not winning expert { 
    wait for by best rule term uncovered ids being  
    available on the “Global Information Partition”, 
    download them and delete list records matching  
    the retrieved ids. 
} 

In order to induce the next rule term, PMCRI would loop back to step one. For 
PMCRI to know when to stop the rule it needs to know when the remaining list 
records on the expert machines are either empty or consist only of instances of the 
current target class. This information is communicated between the winning expert 
and the moderator program using the Global Information Partition. It is possible to 



implement all the descendants of the original Prism algorithm simply by adapting the 
learner algorithm within this framework.  

In layer 3 at the end of the PMCRI execution each expert machine will hold a set of 
terms for each rule. The implementation of the combining procedure in layer three in 
the CDM model is realised by communicating all the rule terms locally stored at the 
expert machines to the blackboard.  

 

Fig. 4. The combining procedure of the CDM is realised by the moderator program, 
which will assemble the complete rules after each expert submits its globally best rule 
terms together with information about the rule for which they were induced. 

Each rule term is associated with information about the rule and the class for which 
the terms were induced. The moderator program then simply appends each rule term 
to its corresponding rule as illustrated in figure 4. 

4. Performance of PMCRI 
To evaluate PMCRI we used the yeast dataset from the UCI repository [18]. To 

create a larger dataset and thus a higher (more challenging) workload for our system, 
we first appended it to itself in a horizontal direction until the dataset comprised a 
total number of 50 attributes. We used this base dataset to evaluate the system's 
performance. We then appended the data to itself in a vertical direction in order to 
increase the number of instances and thus increase the system's workload. Please note 
that the learner algorithms of PMCRI are based on PrismTCS and produce exactly the 
same rules as PrismTCS would induce. There is therefore no need to concern 
ourselves with issues concerning the comparative quality of rules generated by the 
different algorithms. Also please note that all datasets used were based on the yeast 
dataset, thus the classifiers induced in each experiment were identical and issues 
relating to differing numbers of rules and rule terms do not arise. This enables us to 
focus on issues of workload only. We made scale up experiments to evaluate PMCRI's 
performance with respect to its number of processors, speed up experiments to 
evaluate its performance with respect to the number of processors together with the 
processors' workload and size up experiments in order to evaluate its performance 
concerning the system's total workload. The hardware we used comprised ten identical 



machines where each machine had one Pentium processor with 2.8 GHz and one GB 
memory. We run lightweight xUbuntu Linux Systems on each machine.  

4.1 Scale up 

Scale up is used to observe the system's ability to be enlarged. For examining the 
scale up of PMCRI we observe how the response time changes if the number of 
processors is increased while the workload per machine stays constant. In the ideal 
case the response time of PMCRI would stay constant since the total workload of each 
processor stays the same.  

  

Fig. 5. Scale up of PMCRI 

We studied three scale up experiments with a workload corresponding to 
130,000, 300,000 and 850,000 instances per processor. Please note due to the 
distribution of the data via attribute lists each processor only holds a part of each 
data instance, for example the 130k instances workload for each processor in the 
case of two processors are actually 260k instances with half the attributes of each 
instance. In order to simplify matters we just refer to 130k training instances. The 
results of the scale up experiments are shown in figure 5. The results show a nice 
scale up. The drop in scale up with adding more processors can be explained by the 
additional communication overhead in the LAN, as more processors need to 
synchronise by communicating information about covered and uncovered list ids, 
while the amount of data per processor stays constant, the number of ids that need 
to be communicated increases with an increasing number of total instances.  
However as figure 5 also shows the effect of communication overhead can be 
lowered by increasing workload per processor. Loosely speaking the higher the 
overall workload the more the system profits from using additional processors. 

4.2 Speed up 

Speed up is used to compare how much a parallel algorithm is faster than the 
serial version of it. However we are limited with workload of the serial version of 
PrismTCS by the size of the memory of the computer used. However as can be seen 
in section 4.3 all parallel versions of PrismTCS using PMCRI are faster than the 



serial version thus an absolute speed up compared with the serial PrismTCS would 
be positive. However we are able to determine the relative speed up of PMCRI in 
the context of PrismTCS by basing it to a two processor configuration. By 
examining the speed up characteristics of PMCRI we observe how the response 
time changes with the number of processors while the total workload stays constant. 
We studied three speed up experiments with a total number 600k, 1,000k and 
2,000k data instances for configurations of 2, 5 and 10 processors. The results of 
the speedup experiments are shown in figure 6. 

 

 

Fig. 6. Speed up of PMCRI 

As we can expect the speedup increases with the size of the dataset. The ideal 
speedup would be if the amount of processors is doubled then the response time is 
reduced by half. However this behaviour is contradicted for the same reason as the 
scale up behaviour, by a communication overhead. Especially for small datasets, 
the additional communication overhead contradicts the benefit of more processors 
considerably, but for larger datasets the benefit from having more CPU power 
strongly outweighs the communication overhead. Again we observe that PrismTCS 
parallelised using PMCRI is faster the more processors we use especially for higher 
data workloads. 

4.3 Size up 

In size up experiments we examine how PMCRI performs on a fixed processor 
configuration. We do that by increasing the size of the data and leaving the number 
of processors constant. Figure 7 shows the size up for three different processor 
configurations of PMCRI and our serial version of PrismTCS. We increased the 
dataset size from 17k up to 8,000k training instances. 



 
Fig. 7. Size up of PMCRI 

Generally we observe a linear size up for PrismTCS and all PMCRI 
configurations, thus the processing time is a linear function of' the size of the 
dataset. The equations of a linear regression that prove the linear behaviour are 
shown below where x is the number of training instances and y the runtime in ms: 
 

PrismTCS:                   y = 3.840x (R² = 0.994 ) 
PMCRI with 2 processors:         y = 2.019x (R² = 0.997 ) 
PMCRI with 5 processors:         y = 1.065x (R² = 0.995 ) 
PMCRI with 10 processors:           y = 0.775x (R² = 0.997 ) 

Please note that all experiments from figure 7 were sized up to their maximum 
number of training instances. The maximum number of data instances is limited by 
the total amount of memory in the system. Buffering of attribute lists to the hard 
disc would be possible in order to overcome memory limitations; however frequent 
I/O operations are unwanted due to their time expensive behaviour.  

 

Fig. 8. Size up using relative response time. 

We can clearly see that if we use double the amount of memory we can hold 
roughly double the amount of training instances into memory. Figure 8 shows the 



size up using the relative response time for the same configurations as in figure 7, 
however this time we also added the ideal size up into the figure. The ideal size up 
would be that if we have double the amount of training instances on the same 
number of processors then we will need double the amount of time to train our 
classifier. We can observe that the serial version of PrismTCS clearly scales worse 
than the ideal runtime however for all parallel versions we observe a better sizing 
up behaviour than ideal, in particular the more processors we use the better the size 
up result compared with the ideal size up behaviour. Thus we can say PMCRI 
shows a superior size up performance. 

5. Conclusions 
We presented the work and first results of the PMCRI framework, a Parallel 

Modular Classification Rule Induction algorithm. PMCRI harvests the 
computational power of a network in order to make modular classification rule 
induction scaling better on large datasets. We started the paper by discussing the 
limitations of the more popular TDIDT algorithm and then we discussed the Prism 
algorithm family as an alternative that tries to overcome TDIDT's limitations 
naturally. However Prism's downside is that it does not scale well on large datasets. 
We discovered the frequent deletion of and restoring of data records and frequent 
sorting operations for continuous attributes as bottlenecks of Prism. The latter 
bottleneck has been tackled by using attribute lists in order to keep the training data 
sorted during the whole duration of the algorithm. We addressed the bottleneck of 
the frequent deletion and restoring of data records by proposing an algorithm that 
efficiently deletes attribute list instances without having to resize the underlying 
data structure. We achieve a linear scaling behaviour of PrismTCS by 
implementing these two approaches. We then described our work on a parallel 
classification rule induction algorithm based on the same rule generalisation 
method as PrismTCS, the PMCRI algorithm. The parallelisation in PMCRI is 
achieved by distributing attribute lists evenly over the machines in the network. 
Each machine induced rule terms independently that are locally the best. A global 
view of the algorithm is achieved by each machine by exchanging information 
about the local status of each machine using a distributed blackboard architecture. 
As both PMCRI and PrismTCS employ the same rule generalisation strategy the 
rule sets produced by both on the same training data are identical. We then 
experimentally analysed PMCRI's performance. With respect to its scale up 
behaviour we observed that the more processors we use the higher the 
synchronisation overhead due to communicating local information between 
processors. However the synchronisation overhead is contradicted by the 
processors' workload, thus the higher the workload the closer PMCRI scales up to 
its ideal behaviour. With respect to PMCRI speed up we again observed a speed up 
below its ideal speed up, which again can be explained by a communication 
overhead between processors, however we could observe that the higher the 
workload the closer the actual speed up performance is to its ideal. With respect to 
PMCRI size up we observed a linear behaviour on a fixed processor configuration 
with respect to its workload. Generally for PMCRI we observed superior size up 
behaviour to its ideal. We also stretched the boundaries in order to find the 
maximum workload of the system. The maximum workload was limited by the total 



memory available thus the more machines we used the more data we were able to 
use in order to train our classifier. However we can generally say that the benefit of 
using more processors in PMCRI slows down due to an additional communication 
overhead per processor. However the communication overhead can be outweighed 
by adjusting the total workload of the system. Thus, loosely speaking, the user of 
the PMCRI system should balance the number of processors used with the total 
workload, thus for a smaller workload a configuration with less processors or even 
the serial version might be more beneficial concerning the system's runtime. 
However for large workloads a configuration with more processors is more likely 
to be beneficial. We are currently developing a more intelligent workload balancing 
strategy for PMCRI that takes into account that computers might have different 
CPU speeds and memory sizes available.  
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