
PMCRI: A Parallel Modular Classification Rule
Induction Framework

Frederic Stahl1, Max Bramer1, Mo Adda1
1University of Portsmouth, Buckingham Building, Lion Terrace,

Portsmouth PO1 3HE, United Kingdom
{Frederic.Stahl, Max.Bramer, Mo.Adda}@port.ac.uk

Abstract. In a world where massive amounts of data are recorded on a large
scale we need data mining technologies to gain knowledge from the data in a
reasonable time. The Top Down Induction of Decision Trees (TDIDT)
algorithm is a very widely used technology to predict the classification of newly
recorded data. However alternative technologies have been derived that often
produce better rules but do not scale well on large datasets. Such an alternative
to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on
noisy data but does not scale well on large datasets. In this paper we introduce
Prism and investigate its scaling behaviour. We describe how we improved the
scalability of the serial version of Prism and investigate its limitations. We then
describe our work to overcome these limitations by developing a framework to
parallelise algorithms of the Prism family and similar algorithms. We also
present the scale up results of a first prototype implementation.

1. Introduction
The growing interest and importance of commercial knowledge discovery and data

mining techniques has led to a growing interest in the area of classification rule
induction from data samples to enable the classification of previously unseen data.
Research in classification rule induction can be traced back at least to the 1960s [1].A
very widely used method to induce classification rules is TDIDT [2] which has given
rise to a variety of implementations such as C5.0. However alternative algorithms
exist such as the Prism algorithm [3]. Prism produces more generalised rules than
TDIDT and thus tends to perform better on noisy datasets. As a result Prism has been
used in areas where datasets are naturally noisy such as image recognition [4] or text
classification. Prism is also the base for further data mining algorithms such as
PrismTCS [5], N-Prism [6]. A free implementation of Prism can be found in the
WEKA package [7] and also in the Inducer workbench[8]. The increase in
performance of computer hardware such as CPU power and disc storage and sensors
to record data such as CCTV cameras enables companies and researchers to generate
and store larger and larger datasets to which they still wish to apply classification rule
induction algorithms. This has led to the exploration of a new niche in data mining,
parallel and distributed data mining. So far, work on distributed and parallel
classification rule induction has been focused on the well-established TDIDT
approach. Notable developments are the SLIQ [9] and its successor the SPRINT [10]
algorithm. The latter achieves an almost linear scale up with respect to the number of
CPUs and the sample size. However, very little work has been done on scaling up
alternative algorithms such as Prism. One approach to scaling a data mining algorithm

is to sample the data before the algorithm is applied. Catlett’s work [11] showed that
sampling of data results in a loss of accuracy in the induced classifier. However
Catlett’s research was conducted 17 years ago and the datasets he used were fairly
small compared with those used today. Frey and Fisher found in 1999 that the rate of
increase of accuracy slows down with the increase of the sample size [12]. This
resulted in seeking optimized methods for sampling massive datasets such as
progressive sampling [13]. Whereas sampling might be an option for predictive
modelling, scaling up data mining algorithms is still desirable in applications that are
concerned with the discovery of new knowledge. Chan and Stolfo considered a way to
scale up classification rule induction by dividing the data into subsets that fit in a
single computer's memory and then generating a classifier on each data subset in
parallel on several machines[14, 15]. The different classifiers generated are then
combined by using various algorithms in order to achieve a final classifier. Despite the
significant reduction of run times of the classification rule induction process, Chan
and Stolfo's studies also showed that this approach does not achieve the accuracy of a
single classifier induced on the same training data. In order to meet the need for a well
scaling, more generalised and thus noise tolerant classifier, we investigate and
improve PrismTCS’s scaling behaviour and derive a parallel approach to inducing
classification rules in parallel for algorithms based on the Prism family. We present a
framework that induces modular classification rules in parallel based on the PrismTCS
algorithm and evaluate its scaling behaviour.

2. Inducing Modular Classification Rules
The main drawback of the TDIDT approach, also often called the divide and

conquer approach, lies in the intermediate representation of its classification rules in
the form of a decision tree. Rules such as:

IF a = 1 AND b = 1 THEN class = 1
 IF c = 1 AND d = 1 THEN class = 0

which have no attribute in common, could not be induced directly using the TDIDT
approach. In such cases, TDIDT will first need to introduce additional tests that are
logically redundant simply to force the rules into a form suitable for combining into a
tree structure. This will inevitably lead to unnecessarily large and confusing decision
trees.Cendrowska designed the original Prism algorithm to induce directly sets of
'modular' rules that generally will not fit conveniently into a tree structure, thus
avoiding the redundant terms that result when using the TDIDT approach. Prism
generally induces rule sets that tend to overfit less compared with TDIDT, especially
if it is applied to noisy datasets or datasets with missing values [6]. Cendrowska's
Prism algorithm follows the separate-and-conquer approach which learns a rule that
explains a certain part of the training data. It then separates the data explained by the
rule induced and induces the next rule using the remaining data. Thus it recursively
“conquers” until no training data is left. This strategy can be traced back to the AQ
learning system [16]. The basic separate and conquer algorithm can be described as
follows:

Rule_Set = [];
While Stopping Criterion not satisfied{
 Rule = Learn_Rule;
 Remove all data instances covered from Rule;
}

The algorithm specific procedure Learn_Rule learns the best rule for the current
training data subset. After each induced rule all data instances that are not covered are
deleted and the next rule is learned from the remaining data instances. This is done
until a Stopping Criterion is fulfilled. Also the Stopping Criterion is an algorithm
specific one that differs from algorithm to algorithm. PrismTCS (Prism with Target
Class, Smallest first) a version of Prism that attempts to scale up Prism to larger
datasets has been developed by one of the present authors [5]. Whereas in PrismTCS
the separate-and-conquer approach is applied only once, in the original Prism
algorithm it is applied for each class in turn. PrismTCS has a comparable predictive
accuracy to that of Prism [5].

Our implementation of PrismTCS for continuous data only is summarised in the
following pseudo code:

(a) working dataset W = restore Dataset;
 delete all records that match the rules that have
 been derived so far and select the ;
 target class i = class that covers the fewest
 instances in W;
(b) For each attribute A in W
 - sort the data according to A;
 - for each possible split value v of attribute A
 calculate the probability that the class is i
 for both subsets A < v and A � v;
(c) Select the attribute that has the subset S with
 the overall highest probability;
(d) build a rule term describing S;
(e) W = S;
(f) Repeat b to e until the dataset contains only
 records of class i. The induced rule is then
 the conjunction of all the rule terms built at
 step d;
(g) restore Dataset = restore Dataset – W;
 Repeat a to f until W only contains instances of
 class i or is empty;

The following approaches and the parallel classification rule induction algorithm
presented in this paper are explained in the context of PrismTCS. However, our
approaches can be applied to Prism and all its descendants analogously.

2.1 Speeding up PrismTCS

We identified two major overheads in Prism and PrismTCS that lower its
computational efficiency considerably. The overheads comprise sorting for continuous

attributes in step b of the algorithm and the frequent deletion of data instances and
resetting of the training dataset in step a, e and g of the algorithm. With respect to the
sorting overhead we removed the innermost loop of sorting in step b by employing a
pre-sorting strategy. The training dataset is pre-sorted by building attribute lists of the
structure <record id, attribute value, class value> similar to the SPRINT algorithm
[10, 17]. These attribute lists can be sorted before the first iteration of the Prism
algorithm and remain sorted during the whole duration of the algorithm. With respect
to frequent restoring of the training dataset an efficient data compression algorithm
has been developed. When we talk about compression we mean an efficient way to
delete and restore instances of the training dataset, while maintaining the sorted nature
of the attributes, which is needed frequently in the algorithms of the Prism family. For
example regarding the PrismTCS pseudo code, data instances are deleted in step e and
g and restored in step a. The challenge here is to find a way of data efficient
compression that takes account of the pre-sorted attribute lists. One way to implement
this would be to keep two copies of each attribute list in memory, one list for resetting
purposes and one list to work with, analogously to the “working dataset W” and the
“restore Dataset” in the PrismTCS pseudo code in section 2. Attribute lists would be
restored by replacing the working set of lists with a restore set of lists. However this
approach involves a considerable overhead of memory usage by keeping two copies of
the whole training dataset in the form of attribute lists in memory. A further overhead
in processing time is caused by frequently creating deep copies of attribute list
records.

We derived a more memory and time efficient algorithm for deleting and restoring
data which involves having the dataset only stored once in the memory. We do that by
only working with the record ids of each attribute list record which are stored in an
integer array. This array is used to reference attribute values and class values which
are stored in separate double precision and character arrays. Thus when pre-sorting
the attribute list we only need to sort the integer array with record ids. Also when
deleting list records we only need to delete the references in the record ids array. Thus
the attribute values array and class values array are left untouched during the whole
duration of the Prism algorithm. However we also need to avoid expensive resizing of
the record ids array due to deletion and resetting of ids. We do that by replacing ids
that need to be deleted in the array by the next id that does not need to be deleted and
thus the size of the actual array stays the same. If the number of ids that are not
deleted is n then PrismTCS will only take record ids stored between indices 0 and n-1
into account and ignore the rest. Thus PrismTCS is required to update n whenever ids
are deleted or reset.

 The pseudo code below shows the basic compression algorithm:

int numbRelevant;// number of relevant ids in the array
boolean[] remove;// each index in the array corresponds
 //to a actual id value that needs to be
 //deleted
removal(numbRelevant, remove){
 int i,j;
 j = 0;

 FOR(i=0; i<numRelevant; i++){
 IF(remove[i]){
 recordIdsArray[j] = recordIdsArray[i]
 j++;
 }
 }
 numRelevant = j;
}

This algorithm is implemented in steps e and g of the PrismTCS pseudo code. We
implemented three versions of PrismTCS, the original algorithm, as described in
section 2, PrismTCS with attribute lists and PrismTCS with attribute lists and data
compression.

There are three general factors that determine the time taken to process a dataset
using PrismTCS or any other algorithm that generates a model from data:

(1) the volume of data (number of instances and attributes)
(2) the attribute types (continuous attributes generally take much longer to process
 than categorical ones)
(3) the complexity of the model produced in the chosen representation (in the case of
 PrismTCS this is the number of Disjunctive Normal Form rules and the number
 of terms they comprise).

The complexity of the model can vary considerably from one dataset to another,
depending on the appropriateness of the chosen representation for representing the
underlying causality of the domain. Although in the case of PrismTCS large datasets
tend to lead to larger rulesets this is not necessarily or always the case. It is entirely
possible for a very large dataset to be modelled by a small number of rules or (in an
extreme case) for a small dataset to require as many rules as there are instances. It
depends on the suitability of the representation. In all our experiments we have fixed
factors (2) and (3) to enable us to focus on the effect of factor (1). All the attributes
are continuous and all the rulesets derived from the yeast dataset from the UCI
repository [18] lead to precisely the same model being output. We increased the size
of the yeast data by appending it to itself, thus ranging from 1,500 up to 23,000 data
instances, where each instance comprises 8 attributes. As illustrated in figure 1, pre-
sorting has a positive impact on the scaling behaviour of PrismTCS, However both
PrismTCS with and without pre-sorting are scaling with second order polynomial
behaviour. On the other hand PrismTCS with pre-sorting and our data compression
strategy scales up with a linear behaviour.

Fig. 1. Scale up of PrismTCS.

We were able to scale up our version of PrismTCS to a far larger number of
attributes and data instances as shown in section 4. The following regression equations
represent the scale ups of all three versions of PrismTCS where x is the number of
training instances and y is the runtime in ms:

PrismTCS: y = 0.002x2 + 9.036x (R² = 1)
PrismTCS(sort): y = 0.002x2 + 1.158x (R² = 1)
PrismTCS(sort&compress): y = 3.620x (R² = 0.998)

3. PMCRI: A Parallel Modular Classification Rule Induction
Framework

There have been several attempts to scale up classification rule induction via
parallelisation. In the area of TDIDT we have already mentioned the SPRINT [10]
algorithm. We can distinguish two types of parallel processing in data mining: fine
grained parallelisation and loosely coupled distributed data mining [19]. Whereas fine
grained parallelisation makes use of “shared memory multiprocessor” machines
(SMP), loosely coupled distributed data mining makes use of “shared nothing” or
“massively parallel processors” (MPP) [20]. We will focus here on parallelising
modular classification rule induction using an MPP approach. Our reasoning is that
MPP can be represented by a network of workstations and thus is a cheap way of
running parallel algorithms for organisations with limited budgets. We want to use an
MPP infrastructure to parallelise the modular classification rule induction of Prism by
using the Cooperating Data mining Model (CDM) [19]. The CDM model is illustrated
in figure 2. It is partitioned into different sections which we call layers. In the first
layer of the CDM model is the sample selection procedure which partitions the data
sample S into n sub samples where n is the number of workstations available. There
are n Learning algorithms L1,…,Ln in the second layer that run on the corresponding
subsets and generate concept descriptions. C1, …. Cn. In the third layer these concept
descriptions are then merged by a combining procedure to a final concept description
Cfinal. The final concept description in the case of classification rule induction would
be a set of classification rules.

Fig. 2. Cooperating Data Mining.

We developed a parallel modular classification rule induction framework for the
Prism family and tested it on PrismTCS, the PMCRI (Parallel Modular Classification
Rule Induction) framework [21], which applies to the CDM model. Parallelisation in
the first layer is achieved by distributing all attribute lists evenly over n processors and
processing them locally by algorithms L1 to Ln, which induce rule terms. To
implement the second layer in the CDM model we used a distributed blackboard
system architecture based on the DARBS distributed blackboard system [22].

Fig. 3. The architecture of the PMCRI framework using a distributed blackboard
system in order to parallelise the induction of modular rule terms. It is divided into two
logical partitions: one to submit local rule term information and one to retrieve global
information about the algorithm’s status.

A blackboard system can be imagined as a physical blackboard which is observed
by several experts with different knowledge domains, having a common problem to

solve. Each expert will use its knowledge domain plus knowledge written on the
blackboard in order to infer new knowledge about the problem and advertise it to the
other experts by writing it on the blackboard. In the software model such a blackboard
system can be represented by a client server architecture. Figure 3 shows the basic
communication pattern of PMCRI. The expertise of each expert machine is
determined by the attribute lists it holds. Thus loosely speaking, each expert can
induce the “locally best rule term”. The experts then use then the “Local Rule Term
Partition” on the blackboard to exchange information in order to find the “globally
best rule term”. The winning expert then will communicate the ids of the instances that
are uncovered by this rule term to the other waiting experts using the “Global
Information Partition” on the blackboard system. Now the next rule term can be
induced in the same way. In PMCRI the attribute lists decrease in size at the same
rate, thus the workload on each expert machine stays in the same proportion for all
remaining experts.

The following steps describe how PMCRI induces one rule in the context of
PrismTCS[23]:

Step 1 Moderator (PrismTCS) writes on “Global
Information Partition” the command to induce locally
best rule terms.

Step 2 All Experts induce the locally best rule term and
write the rule terms plus its covering probability
and the number of list records covered on the “local
Rule Term Partition”

Step 3 Moderator (PrismTCS) compares all rule terms
written on the “Local Rule Term Partition”; adds
best term to the current rule; writes the name of
the Expert that induced the best rule term on the
Global Information Partition

Step 4 Expert retrieves name of winning expert.
IF Expert is winning expert {
 derive by last induced rule term uncovered ids
 and write them on the “Global Information
 Partition” and delete uncovered list records
}
ELSE IF Expert is not winning expert {
 wait for by best rule term uncovered ids being
 available on the “Global Information Partition”,
 download them and delete list records matching
 the retrieved ids.
}

In order to induce the next rule term, PMCRI would loop back to step one. For
PMCRI to know when to stop the rule it needs to know when the remaining list
records on the expert machines are either empty or consist only of instances of the
current target class. This information is communicated between the winning expert
and the moderator program using the Global Information Partition. It is possible to

implement all the descendants of the original Prism algorithm simply by adapting the
learner algorithm within this framework.

In layer 3 at the end of the PMCRI execution each expert machine will hold a set of
terms for each rule. The implementation of the combining procedure in layer three in
the CDM model is realised by communicating all the rule terms locally stored at the
expert machines to the blackboard.

Fig. 4. The combining procedure of the CDM is realised by the moderator program,
which will assemble the complete rules after each expert submits its globally best rule
terms together with information about the rule for which they were induced.

Each rule term is associated with information about the rule and the class for which
the terms were induced. The moderator program then simply appends each rule term
to its corresponding rule as illustrated in figure 4.

4. Performance of PMCRI
To evaluate PMCRI we used the yeast dataset from the UCI repository [18]. To

create a larger dataset and thus a higher (more challenging) workload for our system,
we first appended it to itself in a horizontal direction until the dataset comprised a
total number of 50 attributes. We used this base dataset to evaluate the system's
performance. We then appended the data to itself in a vertical direction in order to
increase the number of instances and thus increase the system's workload. Please note
that the learner algorithms of PMCRI are based on PrismTCS and produce exactly the
same rules as PrismTCS would induce. There is therefore no need to concern
ourselves with issues concerning the comparative quality of rules generated by the
different algorithms. Also please note that all datasets used were based on the yeast
dataset, thus the classifiers induced in each experiment were identical and issues
relating to differing numbers of rules and rule terms do not arise. This enables us to
focus on issues of workload only. We made scale up experiments to evaluate PMCRI's
performance with respect to its number of processors, speed up experiments to
evaluate its performance with respect to the number of processors together with the
processors' workload and size up experiments in order to evaluate its performance
concerning the system's total workload. The hardware we used comprised ten identical

machines where each machine had one Pentium processor with 2.8 GHz and one GB
memory. We run lightweight xUbuntu Linux Systems on each machine.

4.1 Scale up

Scale up is used to observe the system's ability to be enlarged. For examining the
scale up of PMCRI we observe how the response time changes if the number of
processors is increased while the workload per machine stays constant. In the ideal
case the response time of PMCRI would stay constant since the total workload of each
processor stays the same.

Fig. 5. Scale up of PMCRI

We studied three scale up experiments with a workload corresponding to
130,000, 300,000 and 850,000 instances per processor. Please note due to the
distribution of the data via attribute lists each processor only holds a part of each
data instance, for example the 130k instances workload for each processor in the
case of two processors are actually 260k instances with half the attributes of each
instance. In order to simplify matters we just refer to 130k training instances. The
results of the scale up experiments are shown in figure 5. The results show a nice
scale up. The drop in scale up with adding more processors can be explained by the
additional communication overhead in the LAN, as more processors need to
synchronise by communicating information about covered and uncovered list ids,
while the amount of data per processor stays constant, the number of ids that need
to be communicated increases with an increasing number of total instances.
However as figure 5 also shows the effect of communication overhead can be
lowered by increasing workload per processor. Loosely speaking the higher the
overall workload the more the system profits from using additional processors.

4.2 Speed up

Speed up is used to compare how much a parallel algorithm is faster than the
serial version of it. However we are limited with workload of the serial version of
PrismTCS by the size of the memory of the computer used. However as can be seen
in section 4.3 all parallel versions of PrismTCS using PMCRI are faster than the

serial version thus an absolute speed up compared with the serial PrismTCS would
be positive. However we are able to determine the relative speed up of PMCRI in
the context of PrismTCS by basing it to a two processor configuration. By
examining the speed up characteristics of PMCRI we observe how the response
time changes with the number of processors while the total workload stays constant.
We studied three speed up experiments with a total number 600k, 1,000k and
2,000k data instances for configurations of 2, 5 and 10 processors. The results of
the speedup experiments are shown in figure 6.

Fig. 6. Speed up of PMCRI

As we can expect the speedup increases with the size of the dataset. The ideal
speedup would be if the amount of processors is doubled then the response time is
reduced by half. However this behaviour is contradicted for the same reason as the
scale up behaviour, by a communication overhead. Especially for small datasets,
the additional communication overhead contradicts the benefit of more processors
considerably, but for larger datasets the benefit from having more CPU power
strongly outweighs the communication overhead. Again we observe that PrismTCS
parallelised using PMCRI is faster the more processors we use especially for higher
data workloads.

4.3 Size up

In size up experiments we examine how PMCRI performs on a fixed processor
configuration. We do that by increasing the size of the data and leaving the number
of processors constant. Figure 7 shows the size up for three different processor
configurations of PMCRI and our serial version of PrismTCS. We increased the
dataset size from 17k up to 8,000k training instances.

Fig. 7. Size up of PMCRI

Generally we observe a linear size up for PrismTCS and all PMCRI
configurations, thus the processing time is a linear function of' the size of the
dataset. The equations of a linear regression that prove the linear behaviour are
shown below where x is the number of training instances and y the runtime in ms:

PrismTCS: y = 3.840x (R² = 0.994)
PMCRI with 2 processors: y = 2.019x (R² = 0.997)
PMCRI with 5 processors: y = 1.065x (R² = 0.995)
PMCRI with 10 processors: y = 0.775x (R² = 0.997)

Please note that all experiments from figure 7 were sized up to their maximum
number of training instances. The maximum number of data instances is limited by
the total amount of memory in the system. Buffering of attribute lists to the hard
disc would be possible in order to overcome memory limitations; however frequent
I/O operations are unwanted due to their time expensive behaviour.

Fig. 8. Size up using relative response time.

We can clearly see that if we use double the amount of memory we can hold
roughly double the amount of training instances into memory. Figure 8 shows the

size up using the relative response time for the same configurations as in figure 7,
however this time we also added the ideal size up into the figure. The ideal size up
would be that if we have double the amount of training instances on the same
number of processors then we will need double the amount of time to train our
classifier. We can observe that the serial version of PrismTCS clearly scales worse
than the ideal runtime however for all parallel versions we observe a better sizing
up behaviour than ideal, in particular the more processors we use the better the size
up result compared with the ideal size up behaviour. Thus we can say PMCRI
shows a superior size up performance.

5. Conclusions
We presented the work and first results of the PMCRI framework, a Parallel

Modular Classification Rule Induction algorithm. PMCRI harvests the
computational power of a network in order to make modular classification rule
induction scaling better on large datasets. We started the paper by discussing the
limitations of the more popular TDIDT algorithm and then we discussed the Prism
algorithm family as an alternative that tries to overcome TDIDT's limitations
naturally. However Prism's downside is that it does not scale well on large datasets.
We discovered the frequent deletion of and restoring of data records and frequent
sorting operations for continuous attributes as bottlenecks of Prism. The latter
bottleneck has been tackled by using attribute lists in order to keep the training data
sorted during the whole duration of the algorithm. We addressed the bottleneck of
the frequent deletion and restoring of data records by proposing an algorithm that
efficiently deletes attribute list instances without having to resize the underlying
data structure. We achieve a linear scaling behaviour of PrismTCS by
implementing these two approaches. We then described our work on a parallel
classification rule induction algorithm based on the same rule generalisation
method as PrismTCS, the PMCRI algorithm. The parallelisation in PMCRI is
achieved by distributing attribute lists evenly over the machines in the network.
Each machine induced rule terms independently that are locally the best. A global
view of the algorithm is achieved by each machine by exchanging information
about the local status of each machine using a distributed blackboard architecture.
As both PMCRI and PrismTCS employ the same rule generalisation strategy the
rule sets produced by both on the same training data are identical. We then
experimentally analysed PMCRI's performance. With respect to its scale up
behaviour we observed that the more processors we use the higher the
synchronisation overhead due to communicating local information between
processors. However the synchronisation overhead is contradicted by the
processors' workload, thus the higher the workload the closer PMCRI scales up to
its ideal behaviour. With respect to PMCRI speed up we again observed a speed up
below its ideal speed up, which again can be explained by a communication
overhead between processors, however we could observe that the higher the
workload the closer the actual speed up performance is to its ideal. With respect to
PMCRI size up we observed a linear behaviour on a fixed processor configuration
with respect to its workload. Generally for PMCRI we observed superior size up
behaviour to its ideal. We also stretched the boundaries in order to find the
maximum workload of the system. The maximum workload was limited by the total

memory available thus the more machines we used the more data we were able to
use in order to train our classifier. However we can generally say that the benefit of
using more processors in PMCRI slows down due to an additional communication
overhead per processor. However the communication overhead can be outweighed
by adjusting the total workload of the system. Thus, loosely speaking, the user of
the PMCRI system should balance the number of processors used with the total
workload, thus for a smaller workload a configuration with less processors or even
the serial version might be more beneficial concerning the system's runtime.
However for large workloads a configuration with more processors is more likely
to be beneficial. We are currently developing a more intelligent workload balancing
strategy for PMCRI that takes into account that computers might have different
CPU speeds and memory sizes available.

References
1. Hunt E. B., Marin J., and Stone P. J., Experiments in Induction. 1966:

Academic Press.
2. Quinlan J. R., Induction of decision trees. Machine Learning. Vol. 1. 1986. 81-

106.
3. Cendrowska J., PRISM: an Algorithm for Inducing Modular Rules.

International Journal of Man-Machine Studies, 1987. 27: p. 349-370.
4. Shu-Ching C., Mei-Ling S., and Schengcui Z., “Detection of Soccer Goal Shots

Using Joint Multimedia Features and classification Rules, in Fourth
International Workshop on Multimedia Data Mining. 2003: Washington DC,
USA. p. 36-44.

5. Bramer M., An Information-Theoretic Approach to the Pre-pruning of
Classification Rules. Proceedings of the IFIP Seventeenth World Computer
Congress - TC12 Stream on Intelligent Information Processing. 2002: Kluwer,
B.V. 201-212.

6. Bramer M., Automatic Induction of Classification Rules from Examples Using
N-Prism. Research and Development in Intelligent Systems XVI, 2000.

7. Garner S., Weka: The Waikato Environment for Knowledge Analysis, in New
Zealand Computer Science Research Students Conference. 1995. p. 57-64.

8. Bramer M., Inducer: a public domain workbench for data mining. International
Journal of Systems Science, 2005. 36(14): p. 909-919.

9. Metha M., Agrawal R., and Rissanen J., SLIQ: A Fast Fcalable Classier for
Data Mining. International Conference on Extending Database Technology
EDBT'96), 1996.

10. Shafer J. C., Agrawal R., and Mehta M., SPRINT: A Scalable Parallel
Classifier for Data Mining. Twenty-second International Conference on Very
Large Data Bases, 1996.

11. Catlett J., Megainduction: Machine learning on very large databases. 1991,
University of Technology, Sydney.

12. Frey L. J. and Fisher D. H, Modelling Decision Tree Performance with the
Power Law. eventh International Workshop on Artificial Intelligence and
Statistics, 1999.

13. Provost F., Jensen D., and Oates T., Efficient Progressive Sampling, in
Knowledge Discovery and Data Mining, Geoffrey I., Editor. 1999. p. 23-32.

14. Chan P. K. and Stolfo S.J., Experiments on Multistrategy Learning by Meta
Learning, in Second International Conference on Information and Knowledge
Management. 1993. p. 314-323.

15. Chan P. K. and Stolfo S.J., Meta-Learning for Multistrategy and Parallel
Learning, in Second International Workshop on Multistrategy Learning. 1993.
p. 150-165.

16. Michalski R.S., On the quasi-minimal solution of the general covering
problem, in Proceedings of the Fifth International Symposium on Information
Processing. 1969: Bled, Yugoslavia. p. 125-128.

17. Zaki M. J., Ho C.T., and Agrawal R., Parallel Classification for Data Mining
on Shared Memory Multiprocessors. Fifteenth International conference on Data
Mining, 1999.

18. Blake C. L. and Merz C. J, UCI repository of machine learning databases.
1998, University of California, Irvine, Department of Information and
Computer Sciences.

19. Provost F., Distributed Data Mining: Scaling up and Beyond, in Advances in
Distributed and Parallel Knowledge Discovery, P.C. H. Kargupta, Editor.
2000, AAAI Press / The MIT Press.

20. Kamath C. and Musik R., Scalable Data Mining through Fine-Grained
Parallelism, in Advances in Distributed and Parallel Knowledge Discovery,
P.C. H. Kargupta, Editor. 2000, AAAI Press / The MIT Press.

21. Stahl F. and Bramer M., P-Prism: A Computationally Efficient Approach to
Scaling up Classification Rule Induction, in IFIP International Conference on
Artificial Intelligence. 2008, Springer: Milan.

22. Nolle L., Wong K. C. P., and Hopgood A., DARBS: A Distributed Blackboard
System. Twenty-first SGES International Conference on Knowledge Based
Systems, 2001.

23. Stahl F. and Bramer M., Parallel Induction of Modular Classification Rules, in
Twenty-eighth SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence. 2008, Springer: Cambridge.

