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Abstract Advances in hardware and software technology enable us to collect, store
and distribute large quantities of data on a very large scale. Automatically discover-
ing and extracting hidden knowledge in the form of patterns from these large data
volumes is known as data mining. Data mining technology is not only a part of busi-
ness intelligence, but is also used in many other application areas such as research,
marketing and financial analytics. For example medical scientists can use patterns
extracted from historic patient data in order to determine if a new patient is likely
to respond positively to a particular treatment or not; marketing analysts can use
extracted patterns from customer data for future advertisement campaigns; finance
experts have an interest in patterns that forecast the development of certain stock
market shares for investment recommendations. However, extracting knowledge in
the form of patterns from massive data volumes imposes a number of computational
challenges in terms of processing time, memory, bandwidth and power consump-
tion. These challenges have led to the development of parallel and distributed data
analysis approaches and the utilisation of Grid and Cloud computing. This chapter
gives an overview of parallel and distributed computing approaches and how they
can be used to scale up data mining to large datasets.
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1 Performance Challenges in Data Mining

There is a substantial commercial interest in developing and improving business in-
telligence and data mining applications in order to extract useful information in the
form of patterns from very large data volumes. Computer systems capture our lives
in the form of credit card transactions; loyalty reward systems record our shopping
habits; CCTV cameras, GPS systems embedded in our smartphones and navigation
systems record our movement and whereabouts; and the world wide web records
our data through applications such as facebook, email, twitter and blogs [52]. In
[22] the authors estimated that in the year 2020 the size of our digital universe will
be 44 times as big as it was in the year 2009. Advances in storage technology make
it possible to store all these data volumes at a very low cost, hence the ubiquitous
challenge in data mining is the scalability of data mining techniques to these large
data volumes. Many areas in science are confronted with the problem of scalabil-
ity of data mining techniques also. For example in cosmology, researchers store
terabytes of image data in massive databases such as in the Sloan digital sky sur-
vey [51, 49]. The bioinformatics community is just starting to be able to store and
analyse molecular dynamics simulation data which can easily comprise hundreds of
gigabytes for only one simulation experiment [3]; also in bioinformatics the human
genome project stores the entire genetic blueprint of our bodies [35]. In the business
area large and complex databases are reported, for example Amazon’s two largest
databases combine 42 terabytes of data and AT&T’s largest database comprises 312
terabytes [34]. Loosely speaking, the scientific and business worlds are confronted
with very large data bases storing information. In order to extract meaningful pat-
terns, analysts need to apply data mining techniques. Hence scalable data mining
technologies are required.

A further complication to the mining of these massive amounts of data is the fact
that organisations often store their data in geographically distributed locations in or-
der to overcome bandwidth problems when transferring such large amounts of data
to a central data repository. This generates further problems such as heterogeneous
data base schemas and confidentiality issues when dealing with sensitive data. Some
research has been conducted in order to overcome these bandwidth constraints such
as in the DataMiningGrid.org project [48]. One of their approaches is to deploy in-
dividual data mining close to the data sources in a dynamic way and execute them
remotely rather than downloading myriads of data. However this chapter is about
scaling data mining algorithms to deal with large datasets rather than dealing with
geographically distributed data. For a comprehensive reading list about Distributed
Data Mining approaches that can be used to mine geographically distributed data
sources the reader is referred to [4].

The rest of this chapter is organised as follows. Section 2 highlights parallel and
distributed data mining approaches to tackling the problem of scalability of data
mining techniques. Section 3 discusses approaches to scaling up data stream min-
ing techniques in resource constraint environments. Section 4 provides a summary
of successful applications, available open and commercial parallel data mining sys-
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tems are discussed. This chapter closes with a discussion of remaining challenges
in scaling up data mining to large datasets in Section 5.

2 Parallel and Distributed Data Mining Approaches and
Frameworks

Parallel and distributed data mining approaches have been proposed in the past in or-
der to tackle the challenge of scalability to large data sources. Whereas parallel data
mining clearly refers to the parallelisation of a data mining task by executing data
mining tasks concurrently, the term distributed data mining is used ambiguously in
the data mining literature. Often the term ‘distributed’ is associated with data min-
ing of geographically distributed datasets and is not necessarily concerned with the
computational scalability. The parallelisation of a data mining task often follows a
data parallel approach as the computational workload of data mining tasks is usually
directly dependent on the amount of data that needs to be processed [43]. In data
parallelisation the data is partitioned into smaller subsets and distributed to multiple
processors on which the data mining tasks are executed concurrently. Unless stated
otherwise this chapter uses both the terms parallel data mining and distributed data
mining to refer to data parallelism.

2.1 Multiprocessor Computer Architectures

In order to execute data parallel algorithms a multiprocessor architecture is needed.
The basic idea in data parallelism is to distribute or assign the workload to several
processing units in the form of subsets of the dataset. There are two relevant multi-
processor architectures that are suited for this purpose, tightly-coupled architectures
and loosely-coupled architectures. However hybrids between the two architectures
are possible.

(a) A loosely-coupled architecture comprises multiple standalone computers.
Each computer comprises one processing unit and its local private memory.
This architecture requires data distribution and accumulation mechanisms, and
a communication network. An implementation of this architecture is also often
referred to as ‘Massively Parallel Processors’ (MPP). MPPs are illustrated in
Figure 1(a).

(b) A tightly-coupled architecture consists of multiple processors that share a
common memory using a shared bus system. No data distribution is required as
the processors do not have a private memory. An implementation of this archi-
tecture is also often referred to as ‘Shared memory MultiProcessor machines’
(SMP). SMPs are illustrated in Figure 1(b).
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(c) A hybrid approach between both architectures is possible by building a
loosely-coupled system out of ‘Shared memory Multiprocessor machines’.
SMP/MPP hybrids are illustrated in Figure 1(c).
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Fig. 1 Multiprocessor architectures. (a) Loosely-coupled multiprocessor architecture. (b) Tightly-
coupled multiprocessor architecture. (c) A hybrid of loosely- and tightly-coupled architectures.

A loosely coupled system uses a communication network in order to communi-
cate data, whereas a tightly-coupled system uses the system bus. Regarding tightly
coupled systems there is a bottleneck with the number of processors the system
can support in the context of data mining applications. This is because the more
processors share the system bus, the less bandwidth is available per processor. A
loosely coupled system does not have this bottleneck as the processors do not share
a common system bus. A further advantage of a loosely-coupled system is that the
application components are hosted on different computers distributed in a network.
This makes loosely-coupled systems more robust to hardware failures compared
with tightly coupled systems as a failing processing node will not cause the entire
application to fail. In a tightly-coupled system a failing processor usually represents
a single point of failure. However a disadvantage of a loosely-coupled system is that
it requires communication and collaboration between its computing nodes which
introduces an additional overhead for the application. An advantage of a tightly-
coupled system over a loosely-coupled system is that it is usually more efficient
at processing data as it avoids data replication and does not need to transfer infor-
mation between processing units. Yet loosely-coupled systems can be obtained at
a relatively low cost compared with tightly coupled systems, if standard worksta-
tions are used as processing units. This allows modest sized organisations which
cannot afford a SMP to harvest the computational power and memory storage of
their whole local area network in order to execute parallel data mining tasks. Also
a loosely-coupled system can be upgraded gradually by simply replacing old work-
stations with newer ones, whereas a tightly-coupled system needs to be replaced in
its entirety.
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Hybrid architectures of loosely-coupled SMPs are becoming common and most
workstations nowadays can be seen as small MPPs as they utilise multicore pro-
cessor technology. However, research in the area of data mining has just begun to
utilise such hybrid systems efficiently. The data mining community is called on to
investigate the advantages of such hybrids, their suitability and benefits for scaling
up data mining systems to large data volumes.

2.2 Parallel Predictive Algorithms

One of the most important data mining tasks is classification rule induction, which
can be categorised into ‘divide and conquer’ and ‘separate and conquer’ methods
[52]. ‘Divide and conquer’ generates a decision tree by recursively partitioning the
training data according to the variables and classifications, aiming to optimise a
chosen metric such as the entropy [36]. ‘Separate and conquer’ generates a ruleset
by specialising a general rule for a certain target class on the training data. After
each rule induced the subset of the training examples that is covered by the rules
induced so far is deleted and the next rule is induced until all training examples are
covered by the ruleset. Examples of ‘separate and conquer’ classifiers are [14, 13]
and of the Prism family of algorithms are [10, 6, 5].

Most recent research does not focus on the parallelisation of decision tree induc-
tion, but rather on concurrent execution of whole data mining tasks, we highlight
general parallel decision tree induction approaches in the section as they give a valu-
able insight into issues that may occur when parallelising data mining tasks. There
are two principal ways of parallelising decision tree classifiers: the synchronous tree
construction approach highlighted in Figure 2a and the partitioned tree construction
approach highlighted in Figure 2b [41].

In the‘synchronous tree construction’ the training dataset is initially distributed
between n processors. During the tree induction each processor holds an exact copy
of the tree in its memory (assuming a MPP machine has been used). The processors
cooperate in expanding the same tree node by gathering statistics of their portion of
the data and sharing these statistics through communication. Eventually each pro-
cessor will perform the same tree node expansion independently on their copy of
the tree. Some of the most well-known parallel tree classifiers are based on ‘syn-
chronous tree construction’ with vertical partitioning [39]. In the ‘Partitioned Tree
Construction’ different processors work on different parts of the tree and the training
data. Initially only one processor is assigned to expand the root node. The resulting
child nodes are then assigned to different processors, each independently expand-
ing the subtree of its child node. This is done recursively until all processors are
assigned to different subtrees.

The advantage of the ‘Synchronous tree construction’ is that there is no com-
munication of training data. However, the disadvantage of ‘Synchronous tree con-
struction is that the communication of statistics increases as the tree grows. Also
the workload between the processors is changing during the tree induction and may
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Fig. 2 Parallel decision tree induction approaches. The data is evenly distributed between all pro-
cessors. (a) shows the synchronous tree construction approach. All processors keep the same deci-
sion tree in memory and cooperate on expanding the same tree node. (b) shows the partitioned tree
construction approach. Different processors are assigned on to different subtrees (when possible)
and expand these subtrees simultaneously and independently.

cause workload imbalances [41]. The advantage of ‘Partitioned Tree Construction’
is that as each processor works independently no communication is needed. How-
ever, the disadvantage of the ‘Partitioned Tree Construction’ approach is that ini-
tially a single processor has the entire workload [41]. Taking the aforementioned
advantages of both approaches and minimizing the disadvantages has resulted in
a hybrid approach [41]. This approach starts with the ‘synchronous tree construc-
tion’ until the communication overhead becomes too high and then switches to the
‘partitioned tree construction’, which removes the entire communication.

This illustration of different parallel decision tree based approaches shows the
difficulties encountered when parallelising data mining algorithms, i.e. communica-
tion overheads, synchronisation overheads and workload imbalances. This has led to
the development of frameworks that support the parallelisation of whole families of
algorithms. The remainder of this section highlights frameworks and infrastructure
technologies to assist with the parallelisation of data mining algorithms.

2.3 Parallel Formulations of Separate and Conquer Classification
Rule Induction using PMCRI

The Parallel Modular Classification Rule Induction (PMCRI) framework [44, 46] is
a framework for parallelising algorithms of the Prism family whose members follow
the ‘separate and conquer’ approach.

Figure 3 outlines PMCRI’s basic architecture, which is based on a distributed
blackboard system. A blackboard system is often illustrated using the metaphor
of several experts, with expertise in different domains, that are gathered around a
physical blackboard. The experts can solve a problem they have in common by using
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Fig. 3 The PMCRI framework based on a distributed blackboard architecture.

their own expert knowledge and information written on the blackboard in order to
infer new knowledge and information. Experts share information by writing it on the
blackboard. The software implementation of a blackboard system can be realised
by a client server architecture [32]. Experts are client machines whose expertise is
represented by the portion of the data they hold in memory and the blackboard is a
communication server. PMCRI divides the blackboard into several logical partitions
that have different meanings to the experts. PMCRI’s blackboard is divided into
two logical partitions: one to submit local rule term information and one to retrieve
global information about the whole algorithm’s status. PMCRI partitions the data
vertically (according to the features) and distributes the subsets evenly amongst the
expert machines. The experts induce each rule concurrently by inducing rule terms
that are the ‘best’ terms in the local feature subspace to further specialise a rule.
The experts use the blackboard in order to communicate which rule term is globally
the best one and to assembly the final rule. Figure 3 also highlights a moderator
program. The moderator is also implemented in the form of an expert machine. It
coordinates the rule induction schedule and thus represents the underlying Prism
algorithm. Just replacing the moderator by a different one allows one member of the
Prism family to be changed to another.

2.4 The MapReduce Paradigm for Parallelisation Data Mining

Google’s MapReduce paradigm of parallel programming [16] provides a means to
simplify the development of parallel data mining techniques offering load balancing
and fault tolerance. The actual source code regarding parallelisation and data com-
munication is hidden from the programmer by limiting the parallel programming
model to only the map and the reduce functions. Data mining applications paral-
lelised using MapReduce make use of the Google File System (GFS) [23] which
provides a means of storing data in a distributed manner and redundantly over a net-
work of commodity workstations. Google’s MapReduce is a proprietary software.
However, Hadoop provides an open source implementation of Google’s MapReduce
paradigm based on its Hadoop Distributed File System (HDFS) which is Hadoop’s
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implementation of GFS [25]. MapReduce splits an application into smaller parts
called Mappers. Each mapper can be processed by any of the workstations in the
nodes in the cluster. A high reliability of the application is provided by the frame-
work’s ability to recover a failed mapper. Intermediate results produced by these
mappers are then combined by one or more Reducer nodes.

Intermediate Files

Mapper 1
Mapper 2

Reducer 1

Input Data Files
Output Data

Reducer 2

Fig. 4 A typical setup of a Hadoop computing cluster. A physical node in the computer can execute
more than one Mapper and Reducer.

A typical Hadoop computing cluster is highlighted in Figure 4. Large amounts of
data are processed by splitting this data into smaller portions and storing it redun-
dantly in the cluster using HDFS. Then the smaller portions of the data are loaded
into the mapper machines and processed using a user defined function. The results
computed by the mappers (intermediate files) are passed on the reducers where they
are combined. The programmer is only required to implement the processing func-
tions used by the mappers and the combining function by the reducers.

MapReduce’s relevance in the data mining community has been demonstrated in
countless projects. For example Google reported having utilised MapReduce in at
least 900 projects [16]. However, this was in 2008 and it is very likely that there
are many more projects by now. For example Google developed MiniHash cluster-
ing using the MapReduce paradigm in order to generate personalised recommen-
dations for users of Google News [15]. Google also makes use of MapReduce to
cluster billions of images in order to find new duplicates [30]. The authors of [33]
used MapReduce to create the Parallel Learner for Assembling Numerous Ensemble
Trees (PLANET) system. The PLANET system provides a scalable parallel decision
tree classifier, regression trees and also parallel ensemble learners.

A data mining approach that lends itself to parallelisation using MapReduce is
ensemble learning. In ensemble learning multiple models are generated from sub-
samples or bags of the same data and combined in order to achieve a better pre-
dictive performance. Ensemble learners lend themselves to parallelisation as the
multiple models can potentially be generated concurrently using multiple proces-
sors. Recently published work that aims to parallelise ensemble learners is reported
in: [33, 53, 2, 45]. The authors of [12] adapted MapReduce in order to parallelise
several learning algorithms: amongst others algorithms such as k-means, logistic
regression, naive bayes, support vector machines etc. Also the partitioned tree con-



Scaling up Data Mining to Large Datasets 9

struction approach as highlighted in Section 2.2 could be parallelised using MapRe-
duce by assigning the construction of different subtrees to different mappers.

However as pointed out by [8], MapReduce is designed for use in a dedicated
cluster assuming that each node is equally powerful, reliable and only dedicated to
processing. The authors of [8] further propose to remove some of these assumptions
and create a more ‘grid like’ version of MapReduce.

2.5 Grid and Cloud Computing for Parallel Data Mining

The grid and cloud computing paradigm has emerged as an attractive computing
infrastructure for implementing complex and computationally costly applications.
The difference between grid and cloud computing is often blurred in the literature.
In grid computing users consume but also share computing resources whereas cloud
computing is a rather commercial paradigm where computing resources are offered
through services on demand against payment.

The computing grid is often described with the analogy of an electrical power
grid that transparently provides electricity to the end user. According to this anal-
ogy the computing grid provides computing power in terms of CPU time, memory
and storage. The grid aims to mass computing resources whilst hiding their spec-
ifications. Thus it provides a consistent interface for the end user to access high
performance and/or high throughput computation [31]. A grid is organised in geo-
graphically distributed virtual organisations. Virtual organisations are collections of
computational resources in terms of processing and storage. In general computing
grids are constructed using a set of grid software libraries, the middleware, whose
service-oriented architecture provides services to access virtual organisations for
software applications that want to make use of the grid. An example for a widely
used open source grid middleware is the Globus Toolkit [24].

Data mining in a grid environment is a special form of distributed data mining
[47] as it is stimulated by sharing of resources using local and wide area networks
[29]. Several projects concerned with high performance data mining using grid en-
vironments have been followed up in the past couple of years, such as the DataMin-
ingGrid.org project which aims to integrate a wide variety of of data mining ap-
plications and different application scenarios into a single grid framework [47, 48],
or the gridminer project [7] which aims to integrate the entire knowledge discovery
process in a service-oriented grid application.

Cloud computing refers to the on demand delivery of applications and hardware
resources over the internet in the form of services. Three types of service can be
accessed using a cloud infrastructure. Both grid computing and cloud computing
aim to provide access to large computing and storage resources. However, the cloud
additionally uses visualisation in order to provide access to the computing resources
and thereby conceals physical heterogeneity, geographical distribution, and faults
[37]. Compared with the cloud the grid provides services that enable the collabo-
rative sharing of distributed computing resources. In this sense the grid is comple-
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mentary yet independent from cloud computing [37]. In other words, Grid com-
puting aims to solve computational problems whereas cloud computing provides
software and computing services on demand. Because of this on demand principle
cloud computing is usually used in the private sector whereas grid computing is
used more in public sector research projects. Probably the best known commercial
cloud system is Amazon Web Services [1], comprising Amazon’s S3 (Simple Storage
Service) providing data storage, and Amazon’s EC2 service providing on demand
computing capacity. However, the disadvantage of grid and cloud computing is that
consumers give away partial control of security management to the grid partners or
cloud service providers. For a discussion of this topic the reader is referred to [42].

Scaling up data mining is not only restricted to problems that deal with large
datasets. Performing data mining tasks on resource-constrained devices like smart-
phones and small sensing devices stimulates the need for new strategies for scaling
up data mining techniques. The following section is devoted to the discussion of
strategies of dealing with this problem. In fact, this problem represents the other
side of the coin, traditional scaling up of data mining techniques look at having
high peformance hardware and large data sets, while scaling up data mining tech-
niques for resource-constrained devices look at having possibly smaller data sets to
be analysed using restricted processing capabilities.

3 Approaches to Scaling up Data Stream Mining in Resource
Constrained Environments

We witness the era of handheld devices and small sensors performing tasks that in
the near past required high performance systems. Data streams in and/or produced
on such small devices can serve a number of extremely important applications in
areas such as astronomy, stock market analysis and national security, to name a
few. The following two important facts require the processing of data streams to be
performed locally on-board small devices with low computational power. We shall
refer to such devices in this chapter as resource-constrained environments.

1. It has been proven experimentally that local data processing is an energy effi-
cient alternative to sending the data streams to a computational service with high
power like the cloud [19]; and

2. current computational capabilities of resource-constrained environments do al-
low the performance of complex tasks, like data mining [11].

Despite the continuous advances in the computational capabilities of resource
constrained devices, the demand of having increasingly complex computational
tasks performed has also been continuous. Thus, we encounter what we can refer
to as relative resource constraints, i.e. the advances in the hardware technologies
fall short of addressing the demands of current application needs. The application
needs are in fact coupled with the rise of large amounts of streaming data, which
in turn led to the big data phenomenon. To address the issue of relative resource
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constraints, adapting the process to resource availability is needed. The Algorithm
Granularity approach [18] is a generic framework that is able to adapt any data
stream mining to data rate and resource availability. The following subsection gives
an overview of the approach.

3.1 Algorithm Granularity Approach Overview

Algorithm Granularity approach has been introduced by Gaber with a comprehen-
sive treatment of the subject reported in [17]. The approach relies on the concept
of resource consumption patterns. Resource consumption patterns represent the
change in resource consumption over a period of time, referred to as a time frame.
The algorithm can change its settings from its three entry points: input, output, and
processing. This could be applied to any data stream processing technique. How-
ever, the Algorithm Granularity approach was specifically designed for adapting
data stream mining techniques. The three categories of settings of a mining algo-
rithm are changed over time to cope with the availability of resources and current
data rate. Definitions of these settings are as follows:

Algorithm Input Granularity (AIG) represents the process of changing the data
rates that feed the algorithm. Examples of this include sampling, load shedding,
and creating data synopsis. This is a common solution in many data stream mining
techniques.

Algorithm Output Granularity (AOG) is the process of changing the output size
of the algorithm in order to preserve the limited memory space. In the case of data
mining, we refer to this output as the number of knowledge structures. For example
the number of clusters or rules. The output size could be changed also using the
level of output granularity which means the less detailed the output, the higher the
granularity and vice versa.

Algorithm Processing Granularity (APG) is the process of changing the algo-
rithm parameters in order to consume less processing power. Randomisation and
approximation techniques represent the potential solution strategies in this category.

It has be noted that there is a collective interaction among the above three cat-
egories. AIG mainly affects the data rate and it is associated with bandwidth con-
sumption and battery life. Batteries tend to be drained rapidly when continuously
sending or receiving data streams. On the other hand, AOG is associated with mem-
ory and APG is associated with processing power. The more memory is consumed,
this implies that more knowledge structures are resident in the memory, and thus
AOG is the suitable strategy. When the algorithm falls short of processing the in-
coming streams, algorithmic approximation and randomisation are used to speed
the process up. Thus, APG appears as the suitable strategy. Figure 5 [21] shows the
interaction among the three strategies and associated computational resources.

However, the change in any of the three affects the other resources. For example,
approximation could be used to address the problem of high data rate by having less
processing time per data record. It is important to note that the process of enabling
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Fig. 5 The Effect of Algorithm Granularity on Computational Resources

resource awareness should be very lightweight in order to be feasible in a streaming
environment characterised by its scarcity of resources.

3.2 Formalisation of Algorithm Granularity

The Algorithm Granularity requires continuous monitoring of the computational
resources. This is done over fixed time intervals/frames that are denoted as TF'. Ac-
cording to this periodic resource monitoring, the mining algorithm changes its pa-
rameters/settings to cope with the current consumption patterns of resources. These
parameters are AIG, APG and AOG settings discussed briefly in the previous section.
It has to be noted that setting the value of TF is a critical parameter for the success
of the running technique. The higher the TF is, the lower the adaptation overhead
will be, but at the expense of risking a high consumption of resources during the
long time frame, causing the run-out of one or more of the computational resources.

The use of Algorithm Granularity as a general approach for mining data streams
will require us to provide some formal definitions and notations. The following are
definitions and notation that we will use in our discussion.

R: set of computational resources R = {ry,ra,...,r,}

TF: time interval for resource monitoring and adaptation.

ALT: application lifetime.

ALT': time left to last the application lifetime.

NoF (r;): number of time frames to consume the resources r;, assuming that the
consumption pattern of r; will follow the same pattern of the last time frame.

AGP(r;): algorithm granularity parameter that affects the resource r;.

According to the above, the main rule to be used to use the algorithm granularity
approach is as follows:

IF ‘% < NoF (r;)
THEN SET AGP(r;)+
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ELSE SET AGP(r;)—

Where AGP(r;)+ achieves higher accuracy at the expense of higher consumption
of the resource r;, and AGP(r;)— achieves lower accuracy at the advantage of lower
consumption of the resource r;. For example, when dealing with clustering, it is
computationally cheaper to allow incoming data instances in the stream to join an
existing cluster with randomisation applied to which cluster the data instance would
join. Ideally, the point should join a cluster that has sufficient proximity or a new
cluster should be created to accommodate the new instance. This strategy has been
applied to a technique by Gaber and Yu [20] termed RA-Cluster.

This simplified rule could take different forms according to the monitored re-
source and the algorithm granularity parameter applied to control the consumption
of this resource. The Algorithm Granularity approach has been successfully applied
to a number of data stream mining techniques. These techniques have been pack-
aged in a java-based toolkit, coined Open Mobile Miner [28].

This section gives an overview of the Algorithm Granularity approach. For a
comprehensive treatment of the subject area, the reader is referred to [17]. For in-
terested readers in the data stream mining area including this approach, Gama’s
textbook [21] is our suggested source.

4 Software Tools and Applications

This section highlights some of the readily available parallel and distributed min-
ing tools, highlights several successful applications. The success in merging data
mining with distributed computing technologies has lead to several distributed and
parallel commercial as well as freely available data mining tools. Probably the most
popular commercial system is Amazon’s cloud [1], as mentioned in Section 2.5,
it provides data storage, data analytics tools and on demand computing capacity.
Amazon’s cloud can only be remotely accessed whereas SAS’s ‘Analytics Infras-
tructure’ can be deployed on site as well being used as a cloud service. SAS’s ‘An-
alytics Infrastructure’ can be deployed on SMP or on MPP parallel architectures
and comprises three means to scale up data analysis to large datasets. These are
grid computing, moving computation close to the data in order to avoid data move-
ment, and in memory analytics in order to reduce data access time to disk storage.
A further commectial product is Microsoft’s SQL Server which offers a scalable
data warehouse implementation that can be hosted on MPP architectures. However,
there are also free products such as the well known WEKA data mining software
which allows parallel cross-validation calculations [9]. The Hadoop infrastructure
[25] highlighted in Section 2.4 is a freely available technology, still it is widely used
in commercial business intelligence application.

With the rapid development of parallel and distributed data mining technology,
several successful applications have been reported. For example Google’s PLANET
system [33] mentioned in Section 2.4 has been applied in the domain of ‘compu-
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tational advertising’. Two of the applications of the ‘DataMiningGrid.org’ project
mentioned in Section 2.5 are in the automotive industry [47] for text mining as well
as in bioinformatics for the distributed storage and analysis of very large quanti-
ties of Molecular Dynamics simulation data [50]. Parallel processing capabilities of
grid architectures are the method of choice for the analysis of very large astronomi-
cal datasets such as in [54]. Probably the most popular application of grid computing
is the SETI@home project. The project’s goal is to detect intelligent extraterrestrial
life through the analysis of massive radio telescope data [38].

5 Conclusions and Future Directions

This chapter presented techniques that can be and are used to scale up data mining
tasks to large quantities of data. The approaches and systems highlighted in the
previous sections along with already available commercial as well as free tools show
the prosperity of this field of research. However, despite the recent successes in
the scalability of data mining techniques, it remains an active research area, with
unresolved issues and distinctly new innovative approaches.

Apart from the obvious improvements on hardware such as the usage of Graphics
Processing Units (GPUs) [26], or better parallelisation frameworks and algorithms,
the movement of data and the cost is an issue. Cloud computing is often presented
as the method of choice if you urgently need a large amount of computing power
to analyse a large amount of data. However, bandwidth is often the bottleneck as
cloud systems are usually remotely located. In cases where the data becomes very
large, local processing is still needed. A further open issue on the usage of the cloud
and parallel data mining approaches is the cost/benefit relationship, which is hardly
explored in the literature. Usage of cloud services or in-house parallel computing
facilities is an investment decision that is only justified if the financial benefit of
analysing large quantities of data outweighs the associated computational and hard-
ware costs in financial terms. A further issue of grid and cloud computing that needs
to be addressed more thoroughly is the security of confidential data, as outsourcing
the data analysis also relies on trusting the grid / cloud service provider.

Whereas this chapter mainly discussed scalability issues associated with the size
of the data, the type of method chosen may also inflict a computational bottleneck.
For example the computational INtelligence platform For Evolving and Robust pre-
dictive systems (INFER) [55] provides a complex environment that automatically
adapts to concept changes in the data. It basically evolves by training many differ-
ent data mining models and returns the ‘fittest model’ either autonomously or with
user assistance. Rather than the size of the training data, the training as such and the
adaptation of many models in a concurrent way imposes a considerable computa-
tional bottleneck. Hence loosely coupled as well as tightly coupled parallelisation
needs to be considered for improving the scalability of such systems.

The trend towards multi-core processors in standard workstations needs to be
explored, as networks of such workstations are what we described as a hybrid ar-
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chitecture between loosely and tightly coupled architectures. Existing systems such
as Hadoop rely on the workstations’ operating system to balance the workload effi-
ciently among the available cores.

A distinctly different approach to the analysis of large and complex datasets is
emerging: ‘Visual Analytics’ (VA). VA describes the reasoning assisted by graphical
visualisations in an interactive way. VA is based on the concept of information visu-
alisation which aims at using the computational power of the human brain to process
images and hence gain understanding of the data to be analysed [40]. VA extends
this concept by interactively incorporating automatic analysis methods prior to and
during the visualisation process [27]. The visual representations are not only used
to visualise data and patterns for the user, but also to feed back information from the
user to the analysis system. Using the combined computational power of silicon as
well as biological hardware may result in well-scaling data analysis systems.

In general, parallel and distributed data analysis is still an open field of research.
Past efforts to parallelise data mining techniques have come to fruition, but open
issues outlined in this section remain to be addressed.
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