
 

  
Abstract⎯This paper describes the facilities available in 

Inducer, a public domain rule induction workbench aimed at 
users who may not be computer scientists, who wish to 
analyze their own datasets using a range of data mining 
strategies or to conduct experiments with a given technique or 
combination of techniques across a range of datasets. Inducer 
has a graphical user interface which is designed to be easy to 
use by beginners, but also includes a range of advanced 
features for experienced users, including facilities to export 
the rules generated in several formats and other information 
in a form suitable for further processing by other packages. 
An experiment using the workbench is described. 
 

Index Terms⎯Data Mining, Decision Rules, Decision Trees, 
Rule Induction 

I. INTRODUCTION 
The automatic induction of classification rules from 

examples is one of the key technologies of data mining. 
However, many of the available software tools are aimed at 
specialist academic researchers and require a high level of 
user sophistication, e.g. in manipulating a complex 
graphical interface, typing complicated commands or 
linking modules from a program library. In some cases the 
user is presented with a 'closed world', i.e. the classification 
rules and any statistical or other information generated 
cannot easily be exported from the package. 

Two such packages are MLC++ [1], a library of C++ 
classes for supervised learning which can be incorporated 
into a user's own programs, and WEKA [2], a library of 
algorithms written in Java which can be run from a Java 
command line. 

This paper describes Inducer, a public domain rule 
induction workbench aimed at users who may not be 
computer scientists, who wish to analyze their own datasets 
using a range of alternative data mining strategies or to 
conduct experiments with a technique or combination of 
techniques across a range of datasets. Inducer has a simple 
graphical user interface of checkboxes and menus (basic 
use of the package relying on default settings requires just 
three mouse clicks) and also includes a range of advanced 
features for more experienced users. The package is 
supplied with a number of standard datasets. It is written in 
Java in the interests of portability but no knowledge of that 
language is needed by the user. Inducer runs as an applet 
launched from a standard web browser. There is extensive 
on-line documentation. 

The package was designed to facilitate practical 
experimentation with a range of rule induction algorithms 
and associated strategies. It is written in a modular fashion 
to enable further algorithms and strategies to be added 
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relatively easily in the future. 
Inducer is intended for use with small to medium-size 

datasets. It can handle datasets with an unlimited number of 
instances but is not designed for processing very large 
datasets. The expectation is that users studying a single 
dataset will run Inducer many times to gain a good 
understanding of their data. The availability of a wide range 
of facilities for exploring data is considered more important 
than attempting to incorporate the latest 'state of the art' 
algorithms. 

Inducer incorporates several variants of each of two 
families of rule generation algorithms: the widely used 
TDIDT (Top Down Induction of Decision Trees) algorithm 
which generates classification rules via the intermediate 
representation of a decision tree [3] and the Prism rule 
induction algorithm which generates modular classification 
rules that do not fit into a tree structure [4], [5]. Estimates 
of the predictive accuracy of the rules generated can be 
obtained by running the package in standard 'train and test' 
mode (i.e. using a training set and a separate test set) or 
using cross-validation or jack-knifing. A batch mode 
facility is available for conducting experiments using a 
fixed combination of techniques (selected via the GUI) 
across a number of datasets, as a single Inducer run. The 
rules generated are displayed in one text area on the screen, 
with confusion matrices and information about predictive 
accuracy etc. in another. The contents of both these areas 
can easily be copied into word processor files for reports 
etc. 

Some of the many facilities incorporated in Inducer are 
described in the following sections. 

II. BASIC USE 
Fig. 1 shows a screen image of Inducer running the 

hypothyroid dataset ('hypo') from the repository of machine 
learning datasets at the University of California at Irvine 
(UCI) [6]. 

Inducer is designed to be easy to use. For the 
inexperienced user it requires only three mouse clicks to 
obtain a set of classification rules: two to select a dataset 
from a menu in the top middle of the screen and another to 
press the go button in the top left-hand corner. For the 
expert user there is a wide range of options and facilities 
available. 

The default rule generation algorithm used is TDIDT, 
with entropy (or information gain) as the attribute selection 
criterion. Other parameters all have reasonable default 
values compatible with these. 

There are no limitations on the maximum size of training 
set and test set that can be processed, the maximum number 
of rules that can be generated etc., except the limitations of 
the memory available. Execution times are typically no  
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Fig. 1 Inducer Screen Image 
 

more than a few seconds for datasets of the size of most 
of those in the UCI Repository. 

There are currently 24 datasets available for selection 
from the default input file directory. These are mainly taken 
from the UCI Repository [6]. Alternative input file 
directories can be specified if preferred. The format of 
input files is essentially that specified in [3]. Each dataset 
comprises a name file, a training set and in most cases also 
a test set. The first line of the name file gives a list of all 
possible classifications. Subsequent lines give details of 
each of the attributes in turn, with the name of the attribute 
followed by either a list of its possible values, in the case of 
a categorical attribute, or the word continuous, denoting a 
numerical attribute, or ignore. The facility to specify an 
attribute as ignore is a valuable one, enabling the user 
easily to experiment with the effect of 'turning off' one or 
more attributes without having to change the data. 

Training sets and test sets have the same format. Each 
record corresponds to one instance and comprises the 
values of each of the attributes in the order in which they 
are listed in the name file, separated by commas as 
delimiters, followed by the corresponding classification as 
the last field in the record. 

Having generated a set of classification rules Inducer 
then runs the rules first against the original training set and 
then against a test set of previously unseen data (provided 
that such a test set exists and that Train and Test has been 
selected). 

For each training and test set examined Inducer 
calculates and displays a confusion matrix with one row 

and column per classification and one additional column 
corresponding to unclassified instances. If there are N 
possible classifications the matrix is thus of N rows by 
(N+1) columns. 

The entry for row i, column j corresponds to the number 
of instances in the dataset with a correct classification of i 
and a computed classification of j. Entries in column N+1 
occur when the induced rule set is unable to make a 
classification of a given instance. In the case of a perfect 
classification all non-zero entries in the confusion matrix 
will occur on the leading diagonal of the main N x N 
matrix, with none in the rightmost ('unclassified') column. 

Entries that are not on the leading diagonal correspond to 
the number of incorrect classifications for each correct 
class/incorrect class combination. 

As well as the confusion matrix, Inducer displays the 
number of correct matches, incorrect matches and 
unclassified instances, the percentage of correct matches 
and other statistical information. 

III. RULE GENERATION AND EXECUTION 
Many facilities are available to the user for controlling the 
rule generation process. 
 

A. Rule Generation Algorithms 
Seven variants of the TDIDT tree generation algorithm 

[3] and five variants of the Prism rule generation algorithm 
[4], [5] are provided in Inducer. 

For TDIDT the criterion for selecting the attribute to use 
at each stage of the tree generation process can be: Entropy 



 

(or Information Gain), probably the most widely used 
attribute selection criterion for tree generation, Gain Ratio - 
a measure devised by Quinlan [3] aimed at overcoming the 
bias inherent in the use of information gain towards 
selecting attributes with a large number of values, the well-
known Gini Index, Evidential Power [7], as well as three 
other simpler methods. 

As well as the standard version of Prism, there are four 
other versions available. The rules may be generated by 
processing the instances for each class in turn, working 
either from the largest class to the smallest or vice versa. 
The TC and TCS rule generation strategies described in [8] 
are also available. 
 

B. Using Prior Knowledge 
In cases where some important rules are known in 

advance, the user can give them to Inducer in a separate 
'seed rules' file, the decision tree or rules only being 
generated for the instances the seed rules do not cover. 

Another unusual feature of Inducer is that the user can 
specify that he or she wishes to choose the attribute to be 
used at each stage of the decision tree or rule generation 
process. Processing pauses until the user selects an attribute 
to use from a menu or selects 'automatic' indicating that 
from then on the system should make its own selections. 
Specifying the first few choices in this way is designed to 
allow users to take advantage of the knowledge that some 
attributes are more important to the classification than 
others. 
 

C. Cutoffs During Rule Generation 
A problem that often arises during rule generation is the 

over-fitting of rules to data. A rule such as 
IF a = 1 AND b = 1 AND c = 3 AND d = 2 THEN Class=3  
which is correct but corresponds to only a small number 

of instances in the training set may be of little value in 
predicting the classification for unseen data. 

Generalising such a rule by stopping the rule generation 
process before the left-hand side is complete, e.g.  

IF a = 1 AND b = 1 THEN Class=3 
may be less accurate as far as the training set is 

concerned but of considerably more value when classifying 
data in an unseen test set. 

Either tree or rule generation can be pre-pruned using a 
'size cutoff' (stop if the number of instances in the training 
set currently under consideration is below a specified 
value) or a 'depth cutoff' (stop once a specified number of 
terms have been generated for a given branch or rule). 

The author's J-pruning technique ([9], [8]) is also 
available. This makes use of the J-measure, an information 
theoretic means of quantifying the information content of 
rules [10]. 

If a clash arises during rule generation (e.g. because a 
pruning criterion has been met) a 'clash threshold' 
technique is used: if more than a user-specified percentage 
of the instances under consideration belong to the most 
frequent class they are all treated as belonging to that class, 
otherwise they are all discarded. 
 

D. Discarding Rules on the Basis of 'Interestingness' 
A topic of growing importance in recent years is that of 

rule interestingness [11], the aim of which is to identify 
those rules in a generated rule set that are likely to be of 
most value in classifying unseen instances. Seven measures 

of rule interestingness are calculated by Inducer for each 
rule generated and the user can choose to discard all rules 
with the value of a specified measure below a threshold 
level. 
 

E. Post-pruning 
A facility for the post-pruning of the decision trees 

produced by the TDIDT algorithm, using 'expected error 
pruning' is also provided. The decision tree is generated and 
branches are then progressively removed from the bottom 
up provided that the expected error at the leaf nodes is not 
increased at any stage. 

 
F. Rule Execution Parameters 
A 'default to majority class' facility is provided to force 

Inducer to classify all instances in the test set by assigning 
any that would otherwise be unclassified to the most 
commonly occurring class. This is likely to be of value in 
domains where it is important to maximize the number of 
correct classifications and there is little or no penalty for 
incorrect ones. 

IV. EXPORTING RULES AND OTHER INFORMATION 

A. Exporting Rules 
An important requirement of any practical data mining 

package is that it must be possible to export the rules 
generated by the package for use in the user's own 
programs, without the need for extensive retyping. 

Using the 'Output as' option on the GUI, the rules 
generated by Inducer can be exported to a text file in four 
different formats, including as a Java method (see Fig.2) 
and as a set of Prolog clauses. 
 

public String classify (String age,String specRx, 
      String astig,String tears) { 
String classification=""; 
if (tears.equals("1")) classification="3"; 
else if (astig.equals("1") && tears.equals("2")) 
      classification="2"; 
else if (age.equals("1") && astig.equals("2") && 
      tears.equals("2")) classification="1"; 
else if (age.equals("2") && astig.equals("2") && 
      tears.equals("2")) classification="3"; 
else if (age.equals("3") && astig.equals("2") && 
      tears.equals("2")) classification="1"; 
return classification; 
} 

 
Fig.2 Rules Generated by the lens24 Dataset from [6] as a Java Method 
 

The other options are to output the rules in propositional 
form, i.e. as they are displayed on the screen, or in a 
scripting language suitable for input to the author's 
'Knowledge Web' expert system delivery environment [12]. 

The rule set can also be saved as a rule file in a coded 
form, together with the values of the main system 
parameter settings, in a way that is suitable for processing 
by another program. 

Rule files can also be imported by Inducer (perhaps after 
modification by the user or by another program) for use in 
analyzing further data. Selecting 'Use Saved Rules' 
overrides all the current rule generation parameter settings. 
No processing of the training set takes place. 
 



 

B. Other Output Files 
Output files can also be created giving information 

relating to the rule generation and execution process, for 
subsequent processing. There are three main output files, 
all optional. 

(a) The exceptions file, which contains information about 
each instance misclassified by the generated rules: its 
reference number, the number of the rule that 'fired', i.e. 
was used to generate a classification for the instance, the 
predicted class, i.e. the incorrect classification generated 
and the correct classification. 

(b) The statistics file, which contains a great deal of 
information about each run of Inducer. For both the 
training set and the test set (if there is one) it contains the 
confusion matrix generated, plus for each instance a 
numerical reference number, the number of the rule that 
was used to generate a classification for the instance, the 
predicted class, i.e. the classification generated, the correct 
classification, plus for each rule, information about its 
classification performance on the instances. 

(c) The rule interestingness file, which contains the 
values of seven measures for each rule generated. 

These files are all in CSV (comma delimited) format, 
with export to standard spreadsheets, graphics packages 
etc. in mind. 

In addition to the above the system automatically 
generates a log file recording the results of every run. This 
can be very useful when conducting experiments, as 
described below. 

V. MODIFYING THE INPUT DATA 

Inducer provides a range of facilities to enable the user 
to adjust the data or to use only part of it in a given run. 

The simplest way of doing this is by editing the name, 
data or test files using a text editor. Buttons for doing this 
are provided below the two text areas Inducer uses for 
displaying results. Changing the specification of an 
attribute in the name file from 'categorical' or 'continuous' 
to 'ignore' is a simple way of specifying that that attribute 
should not be used. However, for non-trivial changes it is 
usually better to be able to change the data without editing 
the files themselves. 

 
A. Selecting Attributes 
When the 'Choose Attributes' option is selected, pressing 

the 'Go' button causes the system to wait until the user 
chooses the attributes to be used in the current run. The 
word 'Go' changes to 'Continue'. Selecting a number of 
attributes and pressing 'Continue' restarts the run. 

 
B. Missing Values 
For many practical applications the value of some 

attributes may not be available for some or perhaps even all 
of the instances. An important practical requirement of a 
rule induction algorithm in many domains is the ability to 
make an accurate prediction of the classification of unseen 
test data even when there are missing values in the training 
set, the test set or both. Missing values in both training and 
test sets are conventionally identified by the symbol '?'. 

Two missing value strategies are available in Inducer: 
ignore any instance in either the training or the test set that 
contains one or more missing values or replace any missing 
values for a categorical attribute by the most frequently 
occurring (non-missing) value for that attribute and any 

missing values for a continuous attribute by the average of 
the (non-missing) values of that attribute. This is the default 
setting. 

 
C. Discretizing Continuous Attributes 
The TDIDT and Prism algorithms as implemented in 

Inducer both have a facility for local discretization of 
continuous attributes, i.e. dividing the values of an attribute 
X into two parts, X<a and X>=a, say, at each stage of the 
rule generation process. However, many other rule 
induction algorithms have no facilities for dealing (directly) 
with continuous attributes and for purposes of comparison 
it is sometimes helpful for the user to be able to 'turn off' 
such attributes, effectively treating them as if they were 
specified as ignore attributes in the name file. 

 
D. Header File 
The user can modify the input data in several major ways 

by associating a header file with a dataset. There are 
facilities available: 

(a) To specify the character used to separate data values 
in the training and test files. 

(b) To specify the character used to denote a missing 
value in the training and test files. 

(c) To specify that all attributes specified in the name file 
for the current dataset as 'continuous' be treated as if they 
were specified as a different type, including 'continuous1' 
(rounded to one decimal place before use) and 'integer' 
(rounded to the nearest integer before use). This enables the 
user to experiment with adjusting the precision of 
numerical data before any run. 

(d) To specify that only a given number of instances in 
the training file for the current dataset should be read. 

(e) To specify that all instances with a given 
classification in the training set and the test set (if there is 
one) be ignored.  

(f) To specify that all instances with a given 
classification be treated as 'positive' instances of a concept 
and all instances with other classifications be treated as 
belonging to a single class, which is the negative of that 
concept. 

VI. FACILITIES TO SUPPORT EXPERIMENTATION 

Inducer provides two additional facilities to aid 
experimentation. The first is the log file facility mentioned 
previously. Every time the 'Go' button is pressed details of 
the main system parameter settings are recorded in a file 
inducer.log, together with the number of rules and terms 
generated and the number of instances correctly classified, 
incorrectly classified or unclassified in the training set and 
(if applicable) the test set. 

The second facility is the option to run Inducer in batch 
mode. When this option is checked details of the directories 
used by the Inducer system are taken from the file 
inducer.bat. These are followed by an unlimited number of 
triples specifying a name file, a training set and a test set. 
Pressing the Go button causes Inducer to run on each of 
these triples of files in turn. All other parameter settings are 
taken from the graphical interface. 

Running Inducer in batch mode enables a substantial 
series of experiments, perhaps with a series of different 
datasets, or possibly with a fixed name file and training set 
and a range of different test sets, to be run in a simple and 



 

rapid fashion, with the output automatically recorded in the 
log file. Fig.3 is a typical example of a log file. 

 
[file stems] 
c:\inducer_data\datasets\ 
c:\inducer_data\outfiles\ 
c:\inducer_data\rulefiles\ 
[data files] 
chess.nam,chess.dat,chess.tst 
contact_lenses.nam,contact_lenses.dat,contact_lenses.tst 
crx.nam,crx.dat,crx.tst 
degrees.nam,degrees.dat,degrees.tst 
vote.nam,vote.dat,vote.tst 

 
Fig.3. An Inducer Batch File 

VII. EXPERIMENTS IN RULE INDUCTION 
The availability of the Inducer package makes it 

straightforward to conduct even very extensive 
comparisons of different rule induction algorithms and 
related strategies. A number of comparisons of TDIDT and 
Prism are reported in [5]. 

As a further example, an experiment was conducted to 
compare the sensitivity of the two algorithms to missing 
values. The dataset used for this experiment was the Vote 
dataset from the UCI Repository. The dataset has 16 
attributes (all categorical), 2 classes (Democrat and 
Republican), with 300 instances in the training set and 135 
in the test set.  

Using Datagen, another of the packages in the Inducer 
suite, missing values were systematically introduced into 
the training and test sets in a random fashion with 
frequency from 10% up to 70%. Using the batch mode 
facility of Inducer the classification accuracy of the two 
algorithms was then computed for missing value levels of 
0%, 10%, 20%, 30%, 50% and 70% in each of the training 
and test sets, as a single batch run. 

Both algorithms used the same strategy for dealing with 
missing values, with each missing value being replaced by 
the most frequently occurring value when generating or 
applying the classification rules. 
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Fig. 4. Number of Terms Generated for Varying Levels of Missing Values 
in the 'Vote' Training Set  
 

The two algorithms produced virtually identical numbers 
of rules for each level of missing values in the training set. 
With 70% missing values there is some advantage to Prism 
(65 rules compared with 73). However, Fig. 4 shows that 
Prism is considerably better than TDIDT when measured 
by the total number of terms generated and thus the average 

number of terms per rule. With no missing values Prism 
generates a total of only 89 terms compared with 156 for 
TDIDT. Most strikingly, the total number of terms 
generated by Prism is not much more with 70% missing 
values (306 terms) than with 20% (296). By contrast 
TDIDT generates 462 terms with 20% missing values and 
this rises to 596 as the level of missing values increases to 
70%. 
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Fig. 5. Effects of Introducing Missing Values in the ‘Vote’ Training and 
Test Sets 
 

Fig. 5 shows the comparative levels of classification 
accuracy of the two algorithms for missing value levels of 
20% and 50% in the training set. Both algorithms perform 
well overall, even with high levels of missing values in 
both sets. 

One way to extend these experiments would be to 
examine the effect of pre-pruning the rules, e.g. by means 
of a depth cutoff during the rule generation process, or of 
post-pruning them, say by discarding any rules with too 
low a value of the RI rule interestingness measure. In 
general, a range of such experiments would need to be 
carried out to determine the most appropriate rule induction 
technique for a given application. 

VIII. CONCLUSIONS 

The Inducer workbench provides a powerful framework 
for in-depth experiments with alternative rule induction 
algorithms and related strategies. One such experiment has 
been reported briefly above. The package has been 
developed in a modular fashion to facilitate the addition of 
further algorithms and strategies as required.  

Although not part of its original purpose Inducer has also 
been used as a teaching tool and has proved valuable for 
this, enabling quite elaborate rule induction experiments to 
be carried out without any need for programming. 
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